#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetic Assignment Methods for Gaining Insight into the Management of Infectious Disease by Understanding Pathogen, Vector, and Host Movement


For many pathogens with environmental stages, or those carried by vectors or intermediate hosts, disease transmission is strongly influenced by pathogen, host, and vector movements across complex landscapes, and thus quantitative measures of movement rate and direction can reveal new opportunities for disease management and intervention. Genetic assignment methods are a set of powerful statistical approaches useful for establishing population membership of individuals. Recent theoretical improvements allow these techniques to be used to cost-effectively estimate the magnitude and direction of key movements in infectious disease systems, revealing important ecological and environmental features that facilitate or limit transmission. Here, we review the theory, statistical framework, and molecular markers that underlie assignment methods, and we critically examine recent applications of assignment tests in infectious disease epidemiology. Research directions that capitalize on use of the techniques are discussed, focusing on key parameters needing study for improved understanding of patterns of disease.


Vyšlo v časopise: Genetic Assignment Methods for Gaining Insight into the Management of Infectious Disease by Understanding Pathogen, Vector, and Host Movement. PLoS Pathog 7(4): e32767. doi:10.1371/journal.ppat.1002013
Kategorie: Review
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002013

Souhrn

For many pathogens with environmental stages, or those carried by vectors or intermediate hosts, disease transmission is strongly influenced by pathogen, host, and vector movements across complex landscapes, and thus quantitative measures of movement rate and direction can reveal new opportunities for disease management and intervention. Genetic assignment methods are a set of powerful statistical approaches useful for establishing population membership of individuals. Recent theoretical improvements allow these techniques to be used to cost-effectively estimate the magnitude and direction of key movements in infectious disease systems, revealing important ecological and environmental features that facilitate or limit transmission. Here, we review the theory, statistical framework, and molecular markers that underlie assignment methods, and we critically examine recent applications of assignment tests in infectious disease epidemiology. Research directions that capitalize on use of the techniques are discussed, focusing on key parameters needing study for improved understanding of patterns of disease.


Zdroje

1. RemaisJAkullianADingLSetoE 2010 Analytical methods for quantifying environmental connectivity for the control and surveillance of infectious disease spread. J R Soc Interface 7 1181 1193

2. SmithDLLuceyBWallerLAChildsJERealLA 2002 Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. Proc Natl Acad Sci U S A 99 3668 3672

3. GrenfellBTBjornstadONKappeyJ 2001 Travelling waves and spatial hierarchies in measles epidemics. Nature 414 716 723

4. FergusonNMDonnellyCAAndersonRM 2001 The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. Science 292 1155 1160

5. AdlerF 1993 Migration alone can produce persistence of host-parasitoid models. Am Nat 141 642

6. BjornstadON 2001 Cycles and synchrony: two historical ‘experiments’ and one experience. J Anim Ecol 69 869 873

7. RuxtonGDRohaniP 1998 Fitness-dependent dispersal in metapopulations and its consequences for persistence and synchrony. J Anim Ecol 67 530 539

8. KoopmanJSChickSESimonCPRioloCSJacquezG 2002 Stochastic effects on endemic infection levels of disseminating versus local contacts. Math Biosci 180 49 71

9. HessG 1996 Disease in metapopulation models: Implications for conservation. Ecology 77 1617 1632

10. GurarieDSetoEY 2009 Connectivity sustains disease transmission in environments with low potential for endemicity: modelling schistosomiasis with hydrologic and social connectivities. J R Soc Interface 6 495 508

11. ManelSGaggiottiOEWaplesRS 2005 Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20 136 142

12. KilleenGFKnolsBGGuW 2003 Taking malaria transmission out of the bottle: implications of mosquito dispersal for vector-control interventions. Lancet Infect Dis 3 297 303

13. KoenigWVurenDHoogeP 1996 Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11 514 517

14. WrightS 1931 Evolution in mendelian populations. Genetics 16 97 159

15. WrightS 1969 Evolution and the genetics of populations: the theory of gene frequencies. Volume 2 Chicago University of Chicago Press

16. ClobertJ 2001 Dispersal New York Oxford University Press

17. BeerliPFelsensteinJ 2001 Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 98 4563 4568

18. RannalaBMountainJL 1997 Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci U S A 94 5

19. PritchardJKStephensMDonnelly 2000 Inference of population structure using multilocus genotype data. Genetics 155 945 959

20. PaetkauDSladeRBurdenMEstoupA 2004 Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13 55 65

21. WilsonGRannalaB 2003 Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163 1177 1191

22. CoranderJWaldmannPSillanpaaMJ 2003 Bayesian analysis of genetic differentiation between populations. Genetics 163 367 374

23. FalushDStephensMPritchardJK 2003 Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164 1567 1587

24. BeaumontMARannalaB 2004 The Bayesian revolution in genetics. Nat Rev Genet 5 251 261

25. FaubetPWaplesRSGaggiottiOE 2007 Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16 18

26. DumonteilETripetFRamirez-SierraMJPayetVLanzaroG 2007 Assessment of Triatoma dimidiata dispersal in the Yucatan Peninsula of Mexico by morphometry and microsatellite markers. Am J Trop Med Hyg 76 930 937

27. ExcoffierLLavalGSchneiderS 2005 Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1 47 50

28. PizarroJCGilliganLMStevensL 2008 Microsatellites reveal a high population structure in Triatoma infestans from Chuquisaca, Bolivia. PLoS Negl Trop Dis 2 e202 doi:10.1371/journal.pntd.0000202

29. ValdiviaLNixDWrightMLindbergEFaganT 2006 Coccidioidomycosis as a common cause of community-acquired pneumonia. Emerg Infect Dis 12 958 962

30. VugiaDWheelerCCummingsK 2009 Increase in Coccidioidomycosis - California, 2000–2007. MMWR Morb Mortal Wkly Rep 58 105 109

31. SunenshineRHAndersonSErhartLVossbrinkAKellyPC 2007 Public health surveillance for coccidioidomycosis in Arizona. Ann N Y Acad Sci 1111 96 102

32. FisherMCRannalaBChaturvediVTaylorJW 2002 Disease surveillance in recombining pathogens: multilocus genotypes identify sources of human Coccidioides infections. Proc Natl Acad Sci U S A 99 9067 9071

33. JonesPBrittenH 2010 The absence of concordant population genetic structure in the black-tailed prairie dog and the flea, Oropsylla hirsuta, with implications for the spread of Yersinia pestis. Mol Ecol 19 2038 2049

34. RootJJPuskasRBFischerJWSwopeCBNeubaumMA 2009 Landscape genetics of raccoons (Procyon lotor) associated with ridges and valleys of Pennsylvania: implications for oral rabies vaccination programs. Vector Borne Zoonotic Dis 9 583 588

35. ShanksGDBiomndoKGuyattHLSnowRW 2005 Travel as a risk factor for uncomplicated Plasmodium falciparum malaria in the highlands of western Kenya. Trans R Soc Trop Med Hyg 99 71 74

36. ProtheroRM 1965 Migrants and malaria London Longmans

37. HanskiI 2001 Spatially realistic theory of metapopulation ecology. Naturwissenschaften 88 372 381

38. StorferAMurphyMAEvansJSGoldbergCSRobinsonS 2007 Putting the “landscape” in landscape genetics. Heredity 98 128 1242

39. FaubetPGaggiottiOE 2008 A new Bayesian method to identify the environmental factors that influence recent migration. Genetics 178 1491 1504

40. ZieglerAKönigI 2006 A statistical approach to genetic epidemiology: concepts and applications Weinheim Wiley-VCH 335

41. ExcoffierLHeckelG 2006 Computer programs for population genetics data analysis: a survival guide. Nat Rev Genet 7 745 758

42. CoranderJMarttinenPSirénJTangJ 2008 Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9 539

43. CoranderJWaldmannPMarttinenPSillanpääMJ 2004 BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20 2363 2369

44. PirySAlapetiteACornuetJMPaetkauDBaudouinL 2004 GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95 536 539

45. GuillotGSantosFEstoupA 2008 Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24 1406 1407

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#