Low Diversity Variety Multilocus Sequence Types from Thailand Are Consistent with an Ancestral African Origin
The global burden of HIV-associated cryptococcal meningitis is estimated at nearly one million cases per year, causing up to a third of all AIDS-related deaths. Molecular epidemiology constitutes the main methodology for understanding the factors underpinning the emergence of this understudied, yet increasingly important, group of pathogenic fungi. Cryptococcus species are notable in the degree that virulence differs amongst lineages, and highly-virulent emerging lineages are changing patterns of human disease both temporally and spatially. Cryptococcus neoformans variety grubii (Cng, serotype A) constitutes the most ubiquitous cause of cryptococcal meningitis worldwide, however patterns of molecular diversity are understudied across some regions experiencing significant burdens of disease. We compared 183 clinical and environmental isolates of Cng from one such region, Thailand, Southeast Asia, against a global MLST database of 77 Cng isolates. Population genetic analyses showed that Thailand isolates from 11 provinces were highly homogenous, consisting of the same genetic background (globally known as VNI) and exhibiting only ten nearly identical sequence types (STs), with three (STs 44, 45 and 46) dominating our sample. This population contains significantly less diversity when compared against the global population of Cng, specifically Africa. Genetic diversity in Cng was significantly subdivided at the continental level with nearly half (47%) of the global STs unique to a genetically diverse and recombining population in Botswana. These patterns of diversity, when combined with evidence from haplotypic networks and coalescent analyses of global populations, are highly suggestive of an expansion of the Cng VNI clade out of Africa, leading to a limited number of genotypes founding the Asian populations. Divergence time testing estimates the time to the most common ancestor between the African and Asian populations to be 6,920 years ago (95% HPD 122.96 - 27,177.76). Further high-density sampling of global Cng STs is now necessary to resolve the temporal sequence underlying the global emergence of this human pathogen.
Vyšlo v časopise:
Low Diversity Variety Multilocus Sequence Types from Thailand Are Consistent with an Ancestral African Origin. PLoS Pathog 7(4): e32767. doi:10.1371/journal.ppat.1001343
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001343
Souhrn
The global burden of HIV-associated cryptococcal meningitis is estimated at nearly one million cases per year, causing up to a third of all AIDS-related deaths. Molecular epidemiology constitutes the main methodology for understanding the factors underpinning the emergence of this understudied, yet increasingly important, group of pathogenic fungi. Cryptococcus species are notable in the degree that virulence differs amongst lineages, and highly-virulent emerging lineages are changing patterns of human disease both temporally and spatially. Cryptococcus neoformans variety grubii (Cng, serotype A) constitutes the most ubiquitous cause of cryptococcal meningitis worldwide, however patterns of molecular diversity are understudied across some regions experiencing significant burdens of disease. We compared 183 clinical and environmental isolates of Cng from one such region, Thailand, Southeast Asia, against a global MLST database of 77 Cng isolates. Population genetic analyses showed that Thailand isolates from 11 provinces were highly homogenous, consisting of the same genetic background (globally known as VNI) and exhibiting only ten nearly identical sequence types (STs), with three (STs 44, 45 and 46) dominating our sample. This population contains significantly less diversity when compared against the global population of Cng, specifically Africa. Genetic diversity in Cng was significantly subdivided at the continental level with nearly half (47%) of the global STs unique to a genetically diverse and recombining population in Botswana. These patterns of diversity, when combined with evidence from haplotypic networks and coalescent analyses of global populations, are highly suggestive of an expansion of the Cng VNI clade out of Africa, leading to a limited number of genotypes founding the Asian populations. Divergence time testing estimates the time to the most common ancestor between the African and Asian populations to be 6,920 years ago (95% HPD 122.96 - 27,177.76). Further high-density sampling of global Cng STs is now necessary to resolve the temporal sequence underlying the global emergence of this human pathogen.
Zdroje
1. MitchellTG
PerfectJR
1995 Cryptococcosis in the era of AIDS—100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 8 515 548
2. KingJ
DasguptaA
2005 Cryptococcosis. Updated 30th October, 2009. Available: http://emedicine.medscape.com/article/215354-overview. Accessed 24 April 2010.
3. ParkBJ
WannemuehlerKA
MarstonBJ
GovenderN
PappasPG
2009 Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23 525 530
4. BanerjeeU
DattaK
MajumdarT
GuptaK
2001 Cryptococcosis in India: the awakening of a giant? Med Mycol 39 51 67
5. StevensDA
DenningDW
ShatskyS
ArmstrongRW
AdlerJD
1999 Cryptococcal meningitis in the immunocompromised host: intracranial hypertension and other complications. Mycopathologia 146 1 8
6. DayJ
2004 Cryptococcal meningitis. Pract Neurol 4 274 285
7. SchutteCM
Van der MeydenCH
MagaziDS
2000 The impact of HIV on meningitis as seen at a South African Academic Hospital (1994 to 1998). Infection 28 3 7
8. BicanicT
HarrisonTS
2004 Cryptococcal meningitis. Br Med Bull 72 99 118
9. FranzotSP
SalkinIF
CasadevallA
1999 Cryptococcus neoformans var. grubii: Separate varietal status for Cryptococcus neoformans serotype A isolates. J Clin Microbiol 37 838 840
10. Kwon-ChungKJ
BoekhoutT
FellJW
DiazM
2002 (1557) Proposal to conserve the name Cryptococcus gattii against C. hondurianus and C. bacillisporus (Basidiomycota, Hymenomycetes, Tremellomycetidae). Taxon 51 804 806
11. BoversM
HagenF
KuramaeE
DiazM
SpanjaardL
2006 Unique hybrids between the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii. FEMS Yeast Res 6 599 607
12. BoversM
HagenF
BoekhoutT
2008 Diversity of the Cryptococcus neoformans (Cryptococcus gattii) species. Rev Iberoam Micol 25 S4 12
13. BoversM
HagenF
KuramaeEE
BoekhoutT
2008 Six monophyletic lineages identified within Cryptococcus neoformans and Cryptococcus gattii by multi-locus sequence typing. Fungal Genet Biol 45 400 421
14. BoekhoutT
TheelenB
DiazM
FellJW
HopWCJ
2001 Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. Microbiology 147 891 907
15. MeyerW
CastanedaA
JacksonS
HuynhM
CastanedaE
2003 Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg Infect Dis 9 189 195
16. SukroongreungS
NilakulC
RuangsomboonO
ChuakulW
EampokalapB
1996 Serotypes of Cryptococcus neoformans isolated from patients prior to and during the AIDS era in Thailand. Mycopathologia 135 75 78
17. TayST
LimHC
TajuddinTH
RohaniMY
HamimahH
2006 Determination of molecular types and genetic heterogeneity of Cryptococcus neoformans and C. gattii in Malaysia. Med Mycol 44 617 622
18. Kwon-ChungKJ
BennettJE
1978 Distribution of alpha and a mating types of Cryptococcus neoformans among natural and clinical Isolates. Am J Epidemiol 108 337 340
19. YanZ
LiXG
XuJP
2002 Geographic distribution of mating type alleles of Cryptococcusneoformans in four areas of the United States. J Clin Microbiol 40 965 972
20. HallidayCL
BuiT
KrockenbergerM
MalikR
EllisDH
1999 Presence of alpha and a mating types in environmental and clinical collections of Cryptococcus neoformans var. gattii strains from Australia. J Clin Microbiol 37 2920 2926
21. MadrenysN
DevroeyC
RaeswuytackC
TorresrodriguezJM
1993 Identification of the perfect state of Cryptococcus neoformans from 195 clinical isolates including 84 from AIDS patients.. Mycopathologia 123 65 68
22. Barreto de OliveiraMT
BoekhoutT
TheelenB
HagenF
BaroniFA
2004 Cryptococcus neoformans shows a remarkable genotypic diversity in Brazil. J Clin Microbiol 42 1356 1359
23. OhkusuM
TangonanN
TakeoK
KishidaE
OhkuboM
2002 Serotype, mating type and ploidy of Cryptococcus neoformans strains isolated from patients in Brazil. Rev Inst Med Trop S Paulo 44 299 302
24. Kwon-ChungKJ
1974 Genetics of fungi pathogenic for man. CRC Cr Rev Microbiol 3 115 133
25. PadhyeAA
CarmichaelJW
1969 Mating behavior of Trichophyton mentagrphytes varieties paried with Arthroderma benhamiae mating types. Sabouraudia 7 178 181
26. PadhyeAA
AjelloL
1977 Taxonomic status of hedgehog fungus Trichophyton erinacei. Sabouraudia 15 103 114
27. Kwon-ChungKJ
1975 Perfect state (Emmonsiella capsulata) of fungus causing large form African histoplasmosis. Mycologia 67 980 990
28. Kwon-ChungKJ
WeeksRJ
LarshHW
1974 Studies on Emmonsiella capsulata (Histoplasma capsulatum): II. Distribution of two mating types in 13 endemic states of the United States. Am J Epidemiol 99 44 49
29. RandhawaHS
KowshikT
KhanZU
2003 Decayed wood of Syzygium cumini and Ficus religiosa living trees in Delhi/New Delhi metropolitan area as natural habitat of Cryptococcus neoformans. Med Mycol 41 199 209
30. NishikawaMM
LazeraMS
BarbosaGG
TrillesL
BalassianoBR
2003 Serotyping of 467 Cryptococcus neoformans isolates from clinical and environmental sources in Brazil: analysis of host and regional patterns. J Clin Microbiol 41 73 77
31. CasadevallA
PerfectJR
1998 Cryptococcus neoformans. Washington D.C. ASM Press
32. VivianiMA
EspostoMC
CogliatiM
MontagnaMT
WickesBL
2001 Isolation of a Cryptococcus neoformans serotype A MATa strain from the Italian environment. Med Mycol 39 383 386
33. Kwon-Chung KJBJ
1992 Mucormycosis. Medical Mycology Philadelphia Lea & Febiger
34. JainN
WickesBL
KellerSA
FuJ
CasadevallA
2005 Molecular epidemiology of clinical Cryptococcus neoformans strains from India. J Clin Microbiol 43 5733 5742
35. ChenJ
VarmaA
DiazM
LitvintsevaA
WollenbergK
2008 Cryptococcus neoformans strains and infection in apparently immunocompetent patients, China. Emerg Infect Dis 14 755 762
36. ChenS
SorrellT
NimmoG
SpeedB
CurrieB
2000 Epidemiology and host- and variety-dependent characteristics of infection due to Cryptococcus neoformans in Australia and New Zealand. Clin Infect Dis 31 499 508
37. LitvintsevaAP
ThakurR
VilgalysR
MitchellTG
2006 Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (Serotype A), including a unique population in Botswana. Genetics 172 2223 2238
38. PitisuttithumP
TansuphasawadikulS
SimpsonAJH
HowePA
WhiteNJ
2001 A prospective study of AIDS-associated cryptococcal meningitis in Thailand treated with high-dose amphotericin B. J Infection 43 226 233
39. Illnait-ZaragoziMT
Martinez-MachinGF
Fernandez-AndreuCM
BoekhoutT
MeisJF
2010 Microsatellite typing of clinical and environmental Cryptococcus neoformans var. grubii isolates from Cuba shows multiple genetic lineages. Plos One 5 2 e9124 doi:10.1371/journal.pone.0009124.t004
40. KiddSE
HagenF
TscharkeRL
HuynhM
BartlettKH
2004 A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci USA 101 17258 17263
41. LitvintsevaAP
KestenbaumL
VilgalysR
MitchellTG
2005 Comparative analysis of environmental and clinical populations of Cryptococcus neoformans. J Clin Microbiol 43 556 564
42. ByrnesEJ
LiW
LewitY
MaH
VoelzK
2010 Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog 6 4 e1000850 doi:10.1371/journal.ppat.1000850
43. MeyerW
MarszewskaK
AmirmostofianM
IgrejaRP
HardtkeC
1999 Molecular typing of global isolates of Cryptococcus neoformans var. neoformans by polymerase chain reaction fingerprinting and randomly amplified polymorphic DNA - a pilot study to standardize techniques on which to base a detailed epidemiological survey. Electrophoresis 20 1790 1799
44. MeyerW
AanensenDM
BoekhoutT
CogliatiM
DiazMR
2009 Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol 47 561 570
45. WolfeN
DunavanC
DiamondJ
2007 Origins of major human infectious diseases. Nature 447 279 283
46. FalushD
WirthT
LinzB
PritchardJ
StephensM
2003 Traces of human migrations in Helicobacter pylori populations. Science 299 1582 1585
47. FisherM
KoenigG
WhiteT
San-BlasG
NegroniR
2001 Biogeographic range expansion into South America by Coccidioides immitis mirrors New World patterns of human migration. Proc Natl Acad Sci 98 4558 4562
48. FraserJA
GilesSS
WeninkEC
Geunes-BoyerSG
WrightJR
2005 Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437 1360 1364
49. JohnstonR
1992 Birds of North America. Philadelphia American Ornithologist's Union and Academy of Natural Sciences Of Philadelphia
50. LinX
HeitmanJ
2006 The biology of the Cryptococcus neoformans species complex. Annu Rev Microbiol 60 69 105
51. Swinne-DesgainD
1976 Cryptococcus neoformans in Crops of Pigeons Following Its Experimental Administration. Sabouraudia 14 313 317
52. MooneyHAHRJ
2000 Invasive species in a changing world. Washington DC Island Press Washington DC
53. GrzimekBSN
OlendorfD
2004 Grzimek's animal life encyclopedia. Farmington Hills, Michigan Gale
54. PappagianisD
EinsteinH
1978 Tempest from Tehachapi takes toll or Coccidioides conveyed aloft and afar. West J Med 129 527 530
55. ArchibaldLK
McDonaldLC
RheanpumikankitS
TansuphaswadikulS
ChaovanichA
1999 Fever and Human Immunodeficiency Virus infection as sentinels for emerging mycobacterial and fungal bloodstream infections in hospitalized patients >/ = 15 years old, Bangkok. J Infect Dis 180 87 92
56. LitvintsevaAP
MarraRE
NielsenK
HeitmanJ
VilgalysR
2003 Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in sub-Saharan Africa. Eukaryot Cell 2 1162 1168
57. NgamskulrungrojP
GilgadoF
FaganelloJ
LitvintsevaAP
LealAL
2009 Genetic diversity of the Cryptococcus species complex suggests that Cryptococcus gattii deserves to have varieties. PLoS ONE 4 6 e5862 doi:10.1371/journal.pone.0005862
58. BurtA
CarterDA
KoenigGL
WhiteTJ
TaylorJW
1996 Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proc Natl Acad Sci 93 770 773
59. AgapowPM
BurtA
2001 Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1 101 102
60. BennettRS
MilgroomMG
BergstromGC
2005 Population structure of seedborne Phaeosphaeria nodorum on New York wheat. Phytopathology 95 300 305
61. HudsonRR
KaplanNL
1985 Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111 147 164
62. TajimaF
1989 Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123 585 595
63. Ramos-OnsinsSE
RozasJ
2006 Statistical properties of new neutrality tests against population growth (vol 19, pg 2092, 2002). Mol Biol Evol 23 1642 1642
64. NeiM
1987 Molecular Evolutionary Genetics. New York Columbia University Press
65. HudsonRR
BoosDD
KaplanNL
1992 A Statistical test for detecting geographic subdivision. Mol Biol Evol 9 138 151
66. HudsonRR
2000 A new statistic for detecting genetic differentiation. Genetics 155 2011 2014
67. KasugaT
WhiteTJ
TaylorJW
2002 Estimation of nucleotide substitution rates in eurotiomycete fungi. Mol Biol Evol 19 2318 2324
68. BrouwerAE
RajanuwongA
ChierakulW
GriffinGE
LarsenRA
2004 Combination antifungal therapies for HIV-associated cryptococcal meningitis: a randomised trial. Lancet 363 1764 1767
69. WrightP
InverarityD
2007 Human immunodeficiency virus (HIV) related cryptococcal meningitis in rural central Thailand - treatment difficulties and prevention strategies. Southeast Asian J Trop Med Public Health 38 58 61
70. McClellandCM
ChangYC
VarmaA
Kwon-ChungKJ
2004 Uniqueness of the mating system in Cryptococcus neoformans. Trends Microbiol 12 208 212
71. Kwon-ChungKJ
BennettJE
1978 Distribution of alpha and alpha mating types of Cryptococcus neoformans among natural and clinical isolates. Am J Epidemiol 108 337 340
72. CasaliAK
GoulartL
SilvaLKR
SilvaKRE
RibeiroAM
2003 Molecular typing of clinical and environmental Cryptococcus neoformans isolates in the Brazilian state Rio Grande do Sul. FEMS Yeast Res 3 405 415
73. HiremathSS
ChowdharyA
KowshikT
RandhawaHS
SunS
2008 Long-distance dispersal and recombination in environmental populations of Cryptococcus neoformans var. grubii from India. Microbiology 154 1513 1524
74. TaylorJW
GeiserDM
BurtA
KoufopanouV
1999 The evolutionary biology and population genetics underlying fungal strain typing. Clin Microbiol Rev 12 126 146
75. BuchananKL
MurphyJW
1998 What makes Cryptococcus neoformans a pathogen? Emerg Infect Dis 4 71 83
76. LinXR
HullCM
HeitmanJ
2005 Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434 1017 1021
77. BuiT
LinX
MalikR
HeitmanJ
CarterD
2008 Isolates of Cryptococcus neoformans from infected animals reveal genetic exchange in unisexual, alpha mating type populations. Eukaryot Cell 7 1771 1780
78. XuJP
MitchellTG
2003 Comparative gene genealogical analyses of strains of serotype AD identify recombination in populations of serotypes A and D in the human pathogenic yeast Cryptococcus neoformans. Microbiology 149 2147 2154
79. LinXR
PatelS
LitvintsevaAP
FloydA
MitchellTG
2009 Diploids in the Cryptococcus neoformans serotype A population homozygous for the alpha mating type originate via unisexual mating. Plos Pathogens 5 1 e1000283 doi:10.1371/journal.ppat.1000283
80. SribureeP
KhayhanS
KhamwanC
PanjaiseeS
TharavichitkulP
2004 Serotype and PCR-fingerprints of clinical and environmental isolates of Cryptococcus neoformans in Chiang Mai, Thailand. Mycopathologia 158 25 31
81. LengelerKB
CoxGM
HeitmanJ
2001 Serotype AD strains of Cryptococcus neoformans are diploid or aneuploid and are heterozygous at the mating-type locus. Infect Immun 69 115 122
82. TamuraK
DudleyJ
NeiM
KumarS
2007 MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24 1596 1599
83. PeakallR
SmousePE
2006 GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6 288 295
84. ExcoffierL
SmousePE
QuattroJM
1992 Analysis of molecular variance inferred from metric distances among DNA haplotypes - application to human mitochondrial-DNA restriction data. Genetics 131 479 491
85. JombartT
2008 adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24 1403 1405
86. DoledecS
ChesselD
1987 Seasonal successions and spatial variables in fresh-water environments. 1. Description of a complete 2-way layout by projection of variables. Acta Oecol-Oec Gen 8 403 426
87. SaitouN
NeiM
1987 The Neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406 425
88. FelsensteinJ
1985 Confidence-limits on phylogenies - an approach using the bootstrap. Evolution 39 783 791
89. PerfectJR
KetabchiN
CoxGM
IngramCW
BeiserCL
1993 Karyotyping of Cryptococcus neoformans as an epidemiological tool. J Clin Microbiol 31 3305 3309
90. BrownAHD
FeldmanMW
NevoE
1980 Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96 523 536
91. SmithJM
SmithNH
OrourkeM
SprattBG
1993 How clonal are bacteria. Proc Natl Acad Sci 90 4384 4388
92. EstabrookGF
LandrumL
1975 A simple test for the possible simultaneous evolutionary divergence of two amino acid positions. Taxon 24 609 613
93. XuJP
YanZ
GuoH
2009 Divergence, hybridization, and recombination in the mitochondrial genome of the human pathogenic yeast Cryptococcus gattii. Mol Ecol 18 2628 2642
94. LibradoP
RozasJ
2009 DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25 1451 1452
95. WattersonGA
1975 Number of segregating sites in genetic models without recombination. Theor Popul Biol 7 256 276
96. Drummond AJHS
RawlenceN
RambautA
2007 A rough guide to BEAST 1.4. Available: http://beast.bio.ed.ac.uk/Main_Page. Accessed 11 November 2009
97. ClementM
PosadaD
CrandallKA
2000 TCS: a computer program to estimate gene genealogies. Mol Ecol 9 1657 1659
98. FeilEJ
LiBC
AanensenDM
HanageWP
SprattBG
2004 eBURST: Inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186 1518 1530
99. Ramos-OnsinsSE
RozasJ
2002 Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19 2092 2100
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 4
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- NF-κB Hyper-Activation by HTLV-1 Tax Induces Cellular Senescence, but Can Be Alleviated by the Viral Anti-Sense Protein HBZ
- Bacterial and Host Determinants of MAL Activation upon EPEC Infection: The Roles of Tir, ABRA, and FLRT3
- : Reservoir Hosts and Tracking the Emergence in Humans and Macaques
- On Being the Right Size: The Impact of Population Size and Stochastic Effects on the Evolution of Drug Resistance in Hospitals and the Community