#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

SLO-1-Channels of Parasitic Nematodes Reconstitute Locomotor Behaviour and Emodepside Sensitivity in Loss of Function Mutants


The calcium-gated potassium channel SLO-1 in Caenorhabditis elegans was recently identified as key component for action of emodepside, a new anthelmintic drug with broad spectrum activity. In this study we identified orthologues of slo-1 in Ancylostoma caninum, Cooperia oncophora, and Haemonchus contortus, all important parasitic nematodes in veterinary medicine. Furthermore, functional analyses of these slo-1 orthologues were performed using heterologous expression in C. elegans. We expressed A. caninum and C. oncophora slo-1 in the emodepside-resistant genetic background of the slo-1 loss-of-function mutant NM1968 slo-1(js379). Transformants expressing A. caninum slo-1 from C. elegans slo-1 promoter were highly susceptible (compared to the fully emodepside-resistant slo-1(js379)) and showed no significant difference in their emodepside susceptibility compared to wild-type C. elegans (p = 0.831). Therefore, the SLO-1 channels of A. caninum and C. elegans appear to be completely functionally interchangeable in terms of emodepside sensitivity. Furthermore, we tested the ability of the 5′ flanking regions of A. caninum and C. oncophora slo-1 to drive expression of SLO-1 in C. elegans and confirmed functionality of the putative promoters in this heterologous system. For all transgenic lines tested, expression of either native C. elegans slo-1 or the parasite-derived orthologue rescued emodepside sensitivity in slo-1(js379) and the locomotor phenotype of increased reversal frequency confirming the reconstitution of SLO-1 function in the locomotor circuits. A potent mammalian SLO-1 channel inhibitor, penitrem A, showed emodepside antagonising effects in A. caninum and C. elegans. The study combined the investigation of new anthelmintic targets from parasitic nematodes and experimental use of the respective target genes in C. elegans, therefore closing the gap between research approaches using model nematodes and those using target organisms. Considering the still scarcely advanced techniques for genetic engineering of parasitic nematodes, the presented method provides an excellent opportunity for examining the pharmacofunction of anthelmintic targets derived from parasitic nematodes.


Vyšlo v časopise: SLO-1-Channels of Parasitic Nematodes Reconstitute Locomotor Behaviour and Emodepside Sensitivity in Loss of Function Mutants. PLoS Pathog 7(4): e32767. doi:10.1371/journal.ppat.1001330
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001330

Souhrn

The calcium-gated potassium channel SLO-1 in Caenorhabditis elegans was recently identified as key component for action of emodepside, a new anthelmintic drug with broad spectrum activity. In this study we identified orthologues of slo-1 in Ancylostoma caninum, Cooperia oncophora, and Haemonchus contortus, all important parasitic nematodes in veterinary medicine. Furthermore, functional analyses of these slo-1 orthologues were performed using heterologous expression in C. elegans. We expressed A. caninum and C. oncophora slo-1 in the emodepside-resistant genetic background of the slo-1 loss-of-function mutant NM1968 slo-1(js379). Transformants expressing A. caninum slo-1 from C. elegans slo-1 promoter were highly susceptible (compared to the fully emodepside-resistant slo-1(js379)) and showed no significant difference in their emodepside susceptibility compared to wild-type C. elegans (p = 0.831). Therefore, the SLO-1 channels of A. caninum and C. elegans appear to be completely functionally interchangeable in terms of emodepside sensitivity. Furthermore, we tested the ability of the 5′ flanking regions of A. caninum and C. oncophora slo-1 to drive expression of SLO-1 in C. elegans and confirmed functionality of the putative promoters in this heterologous system. For all transgenic lines tested, expression of either native C. elegans slo-1 or the parasite-derived orthologue rescued emodepside sensitivity in slo-1(js379) and the locomotor phenotype of increased reversal frequency confirming the reconstitution of SLO-1 function in the locomotor circuits. A potent mammalian SLO-1 channel inhibitor, penitrem A, showed emodepside antagonising effects in A. caninum and C. elegans. The study combined the investigation of new anthelmintic targets from parasitic nematodes and experimental use of the respective target genes in C. elegans, therefore closing the gap between research approaches using model nematodes and those using target organisms. Considering the still scarcely advanced techniques for genetic engineering of parasitic nematodes, the presented method provides an excellent opportunity for examining the pharmacofunction of anthelmintic targets derived from parasitic nematodes.


Zdroje

1. JasmerDP

GoverseA

SmantG

2003

Parasitic nematode interactions with mammals and plants.

Annu Rev Phytopathol

41

245

270

2. WolstenholmeAJ

FairweatherI

PrichardR

Samson-HimmelstjernaG

SangsterNC

2004

Drug resistance in veterinary helminths.

Trends Parasitol

20

469

476

3. De ClercqD

SackoM

BehnkeJ

GilbertF

DornyP

1997

Failure of mebendazole in treatment of human hookworm infections in the southern region of Mali.

Am J Trop Med Hyg

57

25

30

4. AlbonicoM

BickleQ

RamsanM

MontresorA

SavioliL

2003

Efficacy of mebendazole and levamisole alone or in combination against intestinal nematode infections after repeated targeted mebendazole treatment in Zanzibar.

Bull World Health Organ

81

343

52

5. ReynoldsonJA

BehnkeJM

PallantLJ

MacnishMG

GilbertF

1997

Failure of pyrantel in treatment of human hookworm infections (Ancylostoma duodenale) in the Kimberley region of north west Australia.

Acta Trop

68

301

12

6. FlohrC

TuyenLN

LewisS

MinhTT

CampbellJ

2007

Low efficacy of mebendazole against hookworm in Vietnam: two randomized controlled trials.

Am J Trop Med Hyg

76

732

6

7. BesierB

2007

New anthelmintics for livestock: the time is right.

Trends Parasitol

23

21

24

8. KoppSR

KotzeAC

McCarthyJS

ColemanGT

2007

High-level pyrantel resistance in the hookworm Ancylostoma caninum.

Vet Parasitol

143

299

304

9. YamazakiM

OkuyamaE

KobayashiM

InoueH

1981

The Structure of Paraherquamide, A Toxic Metabolite from Penicillium paraherquei.

Tetrahedron Letters

22

135

136

10. ZinserEW

WolfML

Alexander-BowmanSJ

ThomasEM

DavisJP

2002

Anthelmintic paraherquamides are cholinergic antagonists in gastrointestinal nematodes and mammals.

J Vet Pharmacol Ther

25

241

250

11. LeeBH

ClothierMF

DuttonFE

NelsonSJ

JohnsonSS

2002

Marcfortine and paraherquamide class of anthelmintics: discovery of PNU-141962.

Curr Top Med Chem

2

779

793

12. LittlePR

HodgesA

WatsonTG

SeedJA

MaederSJ

2010

Field efficacy and safety of an oral formulation of the novel combination anthelmintic, derquantel-abamectin, in sheep in New Zealand.

N Z Vet J

58

121

129

13. KaminskyR

DucrayP

JungM

CloverR

RufenerL

2008

A new class of anthelmintics effective against drug-resistant nematodes.

Nature

452

176

180

14. SasakiT

TakagiM

YaguchiT

MiyadohS

OkadaT

1992

A new anthelmintic cyclodepsipeptide, PF1022A.

J Antibiot (Tokyo)

45

692

697

15. HarderA

Samson-HimmelstjernaG

2002

Cyclooctadepsipeptides–a new class of anthelmintically active compounds.

Parasitol Res

88

481

488

16. Samson-HimmelstjernaG

HarderA

SangsterNC

ColesGC

2005

Efficacy of two cyclooctadepsipeptides, PF1022A and emodepside, against anthelmintic-resistant nematodes in sheep and cattle.

Parasitology

130

343

347

17. BullK

CookA

HopperNA

HarderA

Holden-DyeL

2006

Effects of the novel anthelmintic emodepside on the locomotion, egg-laying behaviour and development of Caenorhabditis elegans.

Int J Parasitol

37

627

36

18. SaegerB

Schmitt-WredeHP

DehnhardtM

BentenWP

KruckenJ

2001

Latrophilin-like receptor from the parasitic nematode Haemonchus contortus as target for the anthelmintic depsipeptide PF1022A.

FASEB J

15

1332

1334

19. WillsonJ

AmliwalaK

DavisA

CookA

CuttleMF

2004

Latrotoxin receptor signaling engages the UNC-13-dependent vesicle-priming pathway in C. elegans.

Curr Biol

14

1374

1379

20. GuestM

BullK

WalkerRJ

AmliwalaK

O'ConnorV

2007

The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans.

Int J Parasitol

37

1577

1588

21. WangZW

SaifeeO

NonetML

SalkoffL

2001

SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction.

Neuron

32

867

881

22. AtkinsonNS

RobertsonGA

GanetzkyB

1991

A component of calcium-activated potassium channels encoded by the Drosophila slo locus.

Science

253

551

555

23. SalkoffL

ButlerA

FerreiraG

SantiC

WeiA

2006

High-conductance potassium channels of the SLO family.

Nat Rev Neurosci

7

921

931

24. ElkinsT

GanetzkyB

WuCF

1986

A Drosophila mutation that eliminates a calcium-dependent potassium current.

Proc Natl Acad Sci USA

83

8415

8419

25. NonetML

SaifeeO

ZhaoH

RandJB

WeiL

1998

Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants.

J Neurosci

18

70

80

26. OkkemaPG

HarrisonSW

PlungerV

AryanaA

FireA

1993

Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans.

Genetics

135

385

404

27. KnausHG

McManusOB

LeeSH

SchmalhoferWA

Garcia-CalvoM

1994

Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels.

Biochemistry

33

5819

5828

28. SambrookJ

FritschEF

ManiatisT

1989

Purifications of Nucleic Acids.

Molecular Cloning – A Laboratory Manual, second edition

New York

Cold Spring Harbor Laboratory Press

E3

E4

29. WylieT

MartinJC

DanteM

MitrevaMD

CliftonSW

2004

Nematode.net: a tool for navigating sequences from parasitic and free-living nematodes.

Nucleic Acids Res

32

D423

D426

30. AltschulSF

MaddenTL

SchafferAA

ZhangJ

ZhangZ

1997

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

Nucleic Acids Res

25

3389

3402

31. LarkinMA

BlackshieldsG

BrownNP

ChennaR

McGettiganPA

2007

Clustal W and Clustal X version 2.0.

Bioinformatics

23

2947

2948

32. TamuraK

DudleyJ

NeiM

KumarS

2007

MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.

Mol Biol Evol

24

1596

1599

33. MitchellPH

BullK

GlautierS

HopperNA

Holden-DyeL

2007

The concentration-dependent effects of ethanol on Caenorhabditis elegans behaviour.

Pharmacogenomics J

7

411

417

34. DaviesAG

Pierce-ShimomuraJT

KimH

VanHovenMK

ThieleTR

2003

A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans.

Cell

115

655

666

35. DemelerJ

KüttlerU

Samson-HimmelstjernaG

2010

Adaptation and evaluation of three different in vitro tests for the detection of resistance to anthelmintics in gastro intestinal nematodes of cattle.

Vet Parasitol

170

61

70

36. HigaziTB

MerriweatherA

ShuL

DavisR

UnnaschTR

2002

Brugia malayi: transient transfection by microinjection and particle bombardment.

Exp Parasitol

100

95

102

37. LokJB

MasseyHCJr

2002

Transgene expression in Strongyloides stercoralis following gonadal microinjection of DNA constructs.

Mol Biochem Parasitol

119

279

284

38. JackstadtP

WilmTP

ZahnerH

HobomG

1999

Transformation of nematodes via ballistic DNA transfer.

Mol Biochem Parasitol

103

261

266

39. BrittonC

MurrayL

2006

Using Caenorhabditis elegans for functional analysis of genes of parasitic nematodes.

Int J Parasitol

36

651

659

40. GeldhofP

MurrayL

CouthierA

GilleardJS

McLauchlanG

2006

Testing the efficacy of RNA interference in Haemonchus contortus.

Int J Parasitol

36

801

810

41. IssaZ

GrantWN

StasiukS

ShoemakerCB

2005

Development of methods for RNA interference in the sheep gastrointestinal parasite, Trichostrongylus colubriformis.

Int J Parasitol

35

935

940

42. VisserA

GeldhofP

de MaereV

KnoxDP

VercruysseJ

2006

Efficacy and specificity of RNA interference in larval life-stages of Ostertagia ostertagi.

Parasitology

133

777

783

43. KotzeAC

BagnallNH

2006

RNA interference in Haemonchus contortus: suppression of beta-tubulin gene expression in L3, L4 and adult worms in vitro.

Mol Biochem Parasitol

145

101

110

44. ZawadzkiJL

PresidentePJ

MeeusenEN

De VeerMJ

2006

RNAi in Haemonchus contortus: a potential method for target validation.

Trends Parasitol

22

495

499

45. VineyME

ThompsonFJ

2008

Two hypotheses to explain why RNA interference does not work in animal parasitic nematodes.

Int J Parasitol

38

43

47

46. CouthierA

SmithJ

McGarrP

CraigB

GilleardJS

2004

Ectopic expression of a Haemonchus contortus GATA transcription factor in Caenorhabditis elegans reveals conserved function in spite of extensive sequence divergence.

Mol Biochem Parasitol

133

241

253

47. KwaMS

VeenstraJG

Van DijkM

RoosMH

1995

Beta-tubulin genes from the parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis elegans.

J Mol Biol

246

500

510

48. DriscollM

DeanE

ReillyE

BergholzE

ChalfieM

1989

Genetic and molecular analysis of a Caenorhabditis elegans beta-tubulin that conveys benzimidazole sensitivity.

J Cell Biol

109

2993

3003

49. CookA

AptelN

PortilloV

SineyE

SihotaR

2006

Caenorhabditis elegans ivermectin receptors regulate locomotor behaviour and are functional orthologues of Haemonchus contortus receptors.

Mol Biochem Parasitol

147

118

125

50. MasseyHCJr

BhopaleMK

LiX

CastellettoM

LokJB

2006

The fork head transcription factor FKTF-1b from Strongyloides stercoralis restores DAF-16 developmental function to mutant Caenorhabditis elegans.

Int J Parasitol

36

347

352

51. CostaJC

LilleyCJ

AtkinsonHJ

UrwinPE

2009

Functional characterisation of a cyst nematode acetylcholinesterase gene using Caenorhabditis elegans as a heterologous system.

Int J Parasitol

39

849

858

52. GillanV

MaitlandK

McCormackG

HimNA

DevaneyE

2009

Functional genomics of hsp-90 in parasitic and free-living nematodes.

Int J Parasitol

39

1071

1081

53. MurrayL

GeldhofP

ClarkD

KnoxDP

BrittonC

2007

Expression and purification of an active cysteine protease of Haemonchus contortus using Caenorhabditis elegans.

Int J Parasitol

37

1117

1125

54. KwaMS

VeenstraJG

RoosMH

1994

Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation at amino acid 200 in beta-tubulin isotype 1.

Mol Biochem Parasitol

63

299

303

55. CulettoE

CombesD

FedonY

RoigA

ToutantJP

1999

Structure and promoter activity of the 5′ flanking region of ace-1, the gene encoding acetylcholinesterase of class A in Caenorhabditis elegans.

J Mol Biol

290

951

966

56. DibbNJ

MaruyamaIN

KrauseM

KarnJ

1989

Sequence analysis of the complete Caenorhabditis elegans myosin heavy chain gene family.

J Mol Biol

205

603

613

57. TaweW

WalterRD

Henkle-DuhrsenK

2000

Onchocerca volvulus superoxide dismutase genes: identification of functional promoters for pre-mRNA transcripts which undergo trans-splicing.

Exp Parasitol

94

172

179

58. KrauseS

SommerA

FischerP

BrophyPM

WalterRD

2001

Gene structure of the extracellular glutathione S-transferase from Onchocerca volvulus and its overexpression and promoter analysis in transgenic Caenorhabditis elegans.

Mol Biochem Parasitol

117

145

154

59. Gomez-EscobarN

GregoryWF

BrittonC

MurrayL

CortonC

2002

Abundant larval transcript-1 and -2 genes from Brugia malayi: diversity of genomic environments but conservation of 5′ promoter sequences functional in Caenorhabditis elegans.

Mol Biochem Parasitol

125

59

71

60. AmbrosV

2004

The functions of animal microRNAs.

Nature

431

350

355

61. BoulinT

EtchbergerJF

HobertO

2006

Reporter gene fusions, WormBook Apr

5

1

23

62. KumarD

WhiteC

FairweatherI

McGeownJG

2004

Electrophysiological and pharmacological characterization of K+-currents in muscle fibres isolated from the ventral sucker of Fasciola hepatica.

Parasitology

129

779

793

63. Holden-DyeL

O'ConnorV

HopperNA

WalkerRJ

HarderA

2007

SLO, SLO, quick, quick, slow: calcium-activated potassium channels as regulators of Caenorhabditis elegans behaviour and targets for anthelmintics.

Invert Neurosci

7

199

208

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#