#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Structure-Function Analysis of the
LRIM1/APL1C Complex and its Interaction with Complement C3-Like Protein
TEP1


Malaria threatens half the world's population and exacts a devastating human

toll. The principal malaria vector in Africa, the mosquito Anopheles

gambiae
, encodes 24 members of a recently identified family of

leucine-rich repeat proteins named LRIMs. Two members of this family, LRIM1 and

APL1C, are crucial components of the mosquito complement-like pathway that is

important for immune defense against Plasmodium parasites.

LRIM1 and APL1C circulate in the hemolymph exclusively as a disulfide-bonded

complex that specifically interacts with the mature form of the complement

C3-like protein, TEP1. We have investigated the specificity of LRIM1/APL1C

complex formation and which regions of these proteins are required for

interactions with TEP1. To address these questions, we have generated a set of

LRIM1 and APL1C alleles altering key conserved structural elements and assayed

them in cell culture for complex formation and interaction with TEP1. Our data

indicate that heterocomplex formation is an intrinsic ability of LRIM1 and APL1C

and identify key homologous cysteine residues forming the intermolecular

disulfide bond. We also demonstrate that the coiled-coil domain is the binding

site for TEP1 but also contributes to the specificity of LRIM1/APL1C complex

formation. In addition, we show that the LRIM1/APL1C complex interacts with the

mature forms of three other TEP proteins, one of which, TEP3, we have

characterized as a Plasmodium antagonist. We conclude that

LRIM1 and APL1C contain three distinct modules:
a C-terminal coiled-coil domain

that can carry different TEP protein cargoes, potentially with distinct

functions, a central cysteine-rich region that controls complex formation and an

N-terminal leucine-rich repeat with a putative role in pathogen recognition.


Vyšlo v časopise: Structure-Function Analysis of the LRIM1/APL1C Complex and its Interaction with Complement C3-Like Protein TEP1. PLoS Pathog 7(4): e32767. doi:10.1371/journal.ppat.1002023
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002023

Souhrn

Malaria threatens half the world's population and exacts a devastating human

toll. The principal malaria vector in Africa, the mosquito Anopheles

gambiae
, encodes 24 members of a recently identified family of

leucine-rich repeat proteins named LRIMs. Two members of this family, LRIM1 and

APL1C, are crucial components of the mosquito complement-like pathway that is

important for immune defense against Plasmodium parasites.

LRIM1 and APL1C circulate in the hemolymph exclusively as a disulfide-bonded

complex that specifically interacts with the mature form of the complement

C3-like protein, TEP1. We have investigated the specificity of LRIM1/APL1C

complex formation and which regions of these proteins are required for

interactions with TEP1. To address these questions, we have generated a set of

LRIM1 and APL1C alleles altering key conserved structural elements and assayed

them in cell culture for complex formation and interaction with TEP1. Our data

indicate that heterocomplex formation is an intrinsic ability of LRIM1 and APL1C

and identify key homologous cysteine residues forming the intermolecular

disulfide bond. We also demonstrate that the coiled-coil domain is the binding

site for TEP1 but also contributes to the specificity of LRIM1/APL1C complex

formation. In addition, we show that the LRIM1/APL1C complex interacts with the

mature forms of three other TEP proteins, one of which, TEP3, we have

characterized as a Plasmodium antagonist. We conclude that

LRIM1 and APL1C contain three distinct modules:
a C-terminal coiled-coil domain

that can carry different TEP protein cargoes, potentially with distinct

functions, a central cysteine-rich region that controls complex formation and an

N-terminal leucine-rich repeat with a putative role in pathogen recognition.


Zdroje

1. BlandinSAMaroisELevashinaEA

2008

Antimalarial responses in Anopheles gambiae: from a

complement-like protein to a complement-like pathway.

Cell Host Microbe

3

364

374

2. BlandinSShiaoSHMoitaLFJanseCJWatersAP

2004

Complement-like protein TEP1 is a determinant of vectorial

capacity in the malaria vector Anopheles gambiae.

Cell

116

661

670

3. DongYAguilarRXiZWarrEMonginE

2006

Anopheles gambiae immune responses to human and rodent Plasmodium

parasite species.

PLoS Pathog

2

e52

4. DongYDimopoulosG

2009

Anopheles fibrinogen-related proteins provide expanded pattern

recognition capacity against bacteria and malaria parasites.

J Biol Chem

284

9835

9844

5. FraitureMBaxterRHSteinertSChelliahYFroletC

2009

Two mosquito LRR proteins function as complement control factors

in the TEP1-mediated killing of Plasmodium.

Cell Host Microbe

5

273

284

6. PovelonesMWaterhouseRMKafatosFCChristophidesGK

2009

Leucine-rich repeat protein complex activates mosquito complement

in defense against Plasmodium parasites.

Science

324

258

261

7. RiehleMMMarkianosKNiareOXuJLiJ

2006

Natural malaria infection in Anopheles gambiae is regulated by a

single genomic control region.

Science

312

577

579

8. RiehleMMXuJLazzaroBPRottschaeferSMCoulibalyB

2008

Anopheles gambiae APL1 is a family of variable LRR proteins

required for Rel1-mediated protection from the malaria parasite, Plasmodium

berghei.

PLoS One

3

e3672

9. VolzJMullerHMZdanowiczAKafatosFCOstaMA

2006

A genetic module regulates the melanization response of Anopheles

to Plasmodium.

Cell Microbiol

8

1392

1405

10. WarrEDasSDongYDimopoulosG

2008

The Gram-negative bacteria-binding protein gene family: its role

in the innate immune system of anopheles gambiae and in anti-Plasmodium

defence.

Insect Mol Biol

17

39

51

11. HabtewoldTPovelonesMBlagboroughAMChristophidesGK

2008

Transmission blocking immunity in the malaria non-vector mosquito

Anopheles quadriannulatus species A. PLoS Pathog

4

e1000070

12. WaterhouseRMPovelonesMChristophidesGK

2010

Sequence-structure-function relations of the mosquito

leucine-rich repeat immune proteins.

BMC Genomics

11

531

13. LeulierFLemaitreB

2008

Toll-like receptors—taking an evolutionary

approach.

Nat Rev Genet

9

165

178

14. CooperMDAlderMN

2006

The evolution of adaptive immune systems.

Cell

124

815

822

15. BaxterRHSteinertSChelliahYVolohonskyGLevashinaEA

2010

A heterodimeric complex of the LRR proteins LRIM1 and APL1C

regulates complement-like immunity in Anopheles gambiae.

Proc Natl Acad Sci U S A

16. CopeLDLafontaineERSlaughterCAHasemannCAJrAebiC

1999

Characterization of the Moraxella catarrhalis uspA1 and uspA2

genes and their encoded products.

J Bacteriol

181

4026

4034

17. LangelierCRSandrinVEckertDMChristensenDEChandrasekaranV

2008

Biochemical characterization of a recombinant TRIM5alpha protein

that restricts human immunodeficiency virus type 1

replication.

J Virol

82

11682

11694

18. YangRBartleSOttoRStassinopoulosARogersM

2004

AglZ is a filament-forming coiled-coil protein required for

adventurous gliding motility of Myxococcus xanthus.

J Bacteriol

186

6168

6178

19. LupasAVan DykeMStockJ

1991

Predicting coiled coils from protein sequences.

Science

252

1162

1164

20. MoitaLFWang-SattlerRMichelKZimmermannTBlandinS

2005

In vivo identification of novel regulators and conserved pathways

of phagocytosis in A. gambiae.

Immunity

23

65

73

21. OstaMAChristophidesGKKafatosFC

2004

Effects of mosquito genes on Plasmodium

development.

Science

303

2030

2032

22. AndrewsRKGardinerEEShenYWhisstockJCBerndtMC

2003

Glycoprotein Ib-IX-V.

Int J Biochem Cell Biol

35

1170

1174

23. HerrinBRAlderMNRouxKHSinaCEhrhardtGR

2008

Structure and specificity of lamprey monoclonal

antibodies.

Proc Natl Acad Sci U S A

105

2040

2045

24. PancerZAmemiyaCTEhrhardtGRCeitlinJGartlandGL

2004

Somatic diversification of variable lymphocyte receptors in the

agnathan sea lamprey.

Nature

430

174

180

25. BellaJHindleKLMcEwanPALovellSC

2008

The leucine-rich repeat structure.

Cell Mol Life Sci

65

2307

2333

26. ChristophidesGKZdobnovEBarillas-MuryCBirneyEBlandinS

2002

Immunity-related genes and gene families in Anopheles

gambiae.

Science

298

159

165

27. Stroschein-StevensonSLFoleyEO'FarrellPHJohnsonAD

2006

Identification of Drosophila gene products required for

phagocytosis of Candida albicans.

PLoS Biol

4

e4

28. OduolFXuJNiareONatarajanRVernickKD

2000

Genes identified by an expression screen of the vector mosquito

Anopheles gambiae display differential molecular immune response to malaria

parasites and bacteria.

Proc Natl Acad Sci U S A

97

11397

11402

29. DimopoulosGChristophidesGKMeisterSSchultzJWhiteKP

2002

Genome expression analysis of Anopheles gambiae: responses to

injury, bacterial challenge, and malaria infection.

Proc Natl Acad Sci U S A

99

8814

8819

30. CohuetAOstaMAMorlaisIAwono-AmbenePHMichelK

2006

Anopheles and Plasmodium: from laboratory models to natural

systems in the field.

EMBO Rep

7

1285

1289

31. MitriCJacquesJCThieryIRiehleMMXuJ

2009

Fine pathogen discrimination within the APL1 gene family protects

Anopheles gambiae against human and rodent malaria species.

PLoS Pathog

5

e1000576

32. HeckmanKLPeaseLR

2007

Gene splicing and mutagenesis by PCR-driven overlap

extension.

Nat Protoc

2

924

932

33. MeisterSAgianianBTurlureFRelogioAMorlaisI

2009

Anopheles gambiae PGRPLC-mediated defense against bacteria

modulates infections with malaria parasites.

PLoS Pathog

5

e1000542

34. RichmanAMBuletPHetruCBarillas-MuryCHoffmannJA

1996

Inducible immune factors of the vector mosquito Anopheles

gambiae: biochemical purification of a defensin antibacterial peptide and

molecular cloning of preprodefensin cDNA.

Insect Mol Biol

5

203

210

35. Franke-FayardBTruemanHRamesarJMendozaJvan der KeurM

2004

A Plasmodium berghei reference line that constitutively expresses

GFP at a high level throughout the complete life cycle.

Mol Biochem Parasitol

137

23

33

36. WolfEKimPSBergerB

1997

MultiCoil: a program for predicting two- and three-stranded

coiled coils.

Protein Sci

6

1179

1189

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#