Ligands of MDA5 and RIG-I in Measles Virus-Infected Cells
RIG-I-like receptors (RLRs) are helicase-like molecules that detect cytosolic RNAs that are absent in the non-infected host. Upon binding to specific RNA patterns, RLRs elicit a signaling cascade that leads to host defense via the production of antiviral molecules. To understand how RLRs sense RNA, it is important to characterize the nature and origin of RLR-associated RNA from virus-infected cells. While it is well established that RIG-I binds 5′-triphosphate containing double-stranded RNA, the in vivo occurring ligand for MDA5 is poorly characterized. A major challenge in examining MDA5 agonists is the apparently transient interaction between the protein and its ligand. To improve the stability of interaction, we have used an approach to crosslink MDA5 to RNA in measles virus-infected cells. The virus-infected cells were treated with the photoactivatable nucleoside analog 4-thiouridine, which is incorporated in newly synthesized RNA. Upon 365 nm UV light exposure of living cells, a covalent linkage between the labeled RNA and the receptor protein is induced, resulting in a higher RNA recovery from RLR immunoprecipitates. Based on next generation sequencing, bioinformatics and in vitro approaches, we observed a correlation between the AU-composition of viral RNA and its ability to induce an MDA5-dependent immune response.
Vyšlo v časopise:
Ligands of MDA5 and RIG-I in Measles Virus-Infected Cells. PLoS Pathog 10(4): e32767. doi:10.1371/journal.ppat.1004081
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004081
Souhrn
RIG-I-like receptors (RLRs) are helicase-like molecules that detect cytosolic RNAs that are absent in the non-infected host. Upon binding to specific RNA patterns, RLRs elicit a signaling cascade that leads to host defense via the production of antiviral molecules. To understand how RLRs sense RNA, it is important to characterize the nature and origin of RLR-associated RNA from virus-infected cells. While it is well established that RIG-I binds 5′-triphosphate containing double-stranded RNA, the in vivo occurring ligand for MDA5 is poorly characterized. A major challenge in examining MDA5 agonists is the apparently transient interaction between the protein and its ligand. To improve the stability of interaction, we have used an approach to crosslink MDA5 to RNA in measles virus-infected cells. The virus-infected cells were treated with the photoactivatable nucleoside analog 4-thiouridine, which is incorporated in newly synthesized RNA. Upon 365 nm UV light exposure of living cells, a covalent linkage between the labeled RNA and the receptor protein is induced, resulting in a higher RNA recovery from RLR immunoprecipitates. Based on next generation sequencing, bioinformatics and in vitro approaches, we observed a correlation between the AU-composition of viral RNA and its ability to induce an MDA5-dependent immune response.
Zdroje
1. LooY-M, GaleMJr (2011) Immune signaling by RIG-I-like receptors. Immunity 34: 680–692.
2. YoneyamaM, KikuchiM, NatsukawaT, ShinobuN, ImaizumiT, et al. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5: 730–737.
3. KatoH, TakahasiK, FujitaT (2011) RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol Rev 243: 91–98.
4. KatoH, TakeuchiO, SatoS, YoneyamaM, YamamotoM, et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101–105.
5. LooY-M, FornekJ, CrochetN, BajwaG, PerwitasariO, et al. (2008) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82: 335–345.
6. PlumetS, HerschkeF, BourhisJ-M, ValentinH, LonghiS, et al. (2007) Cytosolic 5′-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response. PLoS One 2: e279.
7. SaitoT, HiraiR, LooY-M, OwenD, JohnsonCL, et al. (2007) Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci USA 104: 582–587.
8. SatohT, KatoH, KumagaiY, YoneyamaM, SatoS, et al. (2010) LGP2 is a positive regulator of RIG-I–and MDA5-mediated antiviral responses. Proc Natl Acad Sci USA 107: 1512–1517.
9. WilkinsC, GaleM (2010) Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol 22: 41–47.
10. FaulEJ, WanjallaCN, SutharMS, GaleMJr, WirblichC, et al. (2010) Rabies virus infection induces type I interferon production in an IPS-1 dependent manner while dendritic cell activation relies on IFNAR signaling. PLoS Path 6: e1001016.
11. IkegameS, TakedaM, OhnoS, NakatsuY, NakanishiY, et al. (2010) Both RIG-I and MDA5 RNA helicases contribute to the induction of alpha/beta interferon in measles virus-infected human cells. J Virol 84: 372–379.
12. SaitoT, GaleMJr (2007) Principles of intracellular viral recognition. Curr Opin Immunol 19: 17–23.
13. YountJS, GitlinL, MoranTM, LópezCB (2008) MDA5 participates in the detection of paramyxovirus infection and is essential for the early activation of dendritic cells in response to Sendai virus defective interfering particles. J Immunol 180: 4910–4918.
14. FujitaT, OnoguchiK, OnomotoK, HiraiR, YoneyamaM (2007) Triggering antiviral response by RIG-I-related RNA helicases. Biochimie 89: 754–760.
15. WangY, LudwigJ, SchuberthC, GoldeckM, SchleeM, et al. (2010) Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat Struct Mol Biol 17: 781–787.
16. CivrilF, BennettM, MoldtM, DeimlingT, WitteG, et al. (2011) The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling. EMBO reports 12: 1127–1134.
17. JiangF, RamanathanA, MillerMT, TangG-Q, GaleM, et al. (2011) Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479: 423–427.
18. KowalinskiE, LunardiT, McCarthyAA, LouberJ, BrunelJ, et al. (2011) Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147: 423–435.
19. LuoD, DingSC, VelaA, KohlwayA, LindenbachBD, et al. (2011) Structural insights into RNA recognition by RIG-I. Cell 147: 409–422.
20. BaumA, SachidanandamR, García-SastreA (2010) Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc Natl Acad Sci USA 107: 16303–16308.
21. HornungV, EllegastJ, KimS, BrzózkaK, JungA, et al. (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314: 994–997.
22. PichlmairA, SchulzO, TanCP, NäslundTI, LiljeströmP, et al. (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314: 997–1001.
23. SchleeM, RothA, HornungV, HagmannCA, WimmenauerV, et al. (2009) Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31: 25–34.
24. KatoH, TakeuchiO, Mikamo-SatohE, HiraiR, KawaiT, et al. (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5. J Exp Med 205: 1601–1610.
25. PichlmairA, SchulzO, TanC-P, RehwinkelJ, KatoH, et al. (2009) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83: 10761–10769.
26. BerkeIC, ModisY (2012) MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J 31: 1714–1726.
27. BerkeIC, YuX, ModisY, EgelmanEH (2012) MDA5 assembles into a polar helical filament on dsRNA. Proc Natl Acad Sci USA 109: 18437–18441.
28. PeisleyA, LinC, WuB, Orme-JohnsonM, LiuM, et al. (2011) Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc Natl Acad Sci USA 108: 21010–21015.
29. AndrejevaJ, ChildsKS, YoungDF, CarlosTS, StockN, et al. (2004) The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter. Proc Natl Acad Sci USA 101: 17264–17269.
30. ChildsK, StockN, RossC, AndrejevaJ, HiltonL, et al. (2007) mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology 359: 190–200.
31. ParisienJ-P, BammingD, KomuroA, RamachandranA, RodriguezJJ, et al. (2009) A Shared Interface Mediates Paramyxovirus Interference with Antiviral RNA Helicases MDA5 and LGP2. J Virol 83: 7252–7260.
32. MotzC, SchuhmannKM, KirchhoferA, MoldtM, WitteG, et al. (2013) Paramyxovirus V proteins disrupt the fold of the RNA sensor MDA5 to inhibit antiviral signaling. Science 339: 690–693.
33. SaitoT, OwenDM, JiangF, MarcotrigianoJ, GaleMJr (2008) Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454: 523–527.
34. SchnellG, LooY-M, MarcotrigianoJ, GaleMJr (2012) Uridine composition of the poly-U/UC tract of HCV RNA defines non-self recognition by RIG-I. PLoS Path 8: e1002839.
35. LuthraP, SunD, SilvermanRH, HeB (2011) Activation of IFN-β expression by a viral mRNA through RNase L and MDA5. Proc Natl Acad Sci USA 108: 2118–2123.
36. FengQ, HatoSV, LangereisMA, ZollJ, Virgen-SlaneR, et al. (2012) MDA5 Detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell reports 2: 1187–1196.
37. HafnerM, LandthalerM, BurgerL, KhorshidM, HausserJ, et al. (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141: 129–141.
38. del ValleJR, DevauxP, HodgeG, WegnerNJ, McChesneyMB, et al. (2007) A vectored measles virus induces hepatitis B surface antigen antibodies while protecting macaques against measles virus challenge. J Virol 81: 10597–10605.
39. SchnellMJ, MebatsionT, ConzelmannK-K (1994) Infectious rabies viruses from cloned cDNA. EMBO J 13: 4195.
40. HoskinsJ, SandersF (1957) Propagation of mouse encephalomyocarditis virus in ascites tumour cells maintained in vitro. Br J Exp Pathol 38: 268.
41. OsorioJE, MartinLR, PalmenbergAC (1996) The immunogenic and pathogenic potential of short poly (C) tract Mengo viruses. Virology 223: 344–350.
42. ColonnoRJ, BanerjeeAK (1976) A unique RNA species involved in initiation of vesicular stomatitis virus RNA transcription in vitro. Cell 8: 197–204.
43. LeppertM, RittenhouseL, PerraultJ, SummersDF, KolakofskyD (1979) Plus and minus strand leader RNAs in negative strand virus-infected cells. Cell 18: 735–747.
44. CattaneoR, RebmannG, SchmidA, BaczkoK, Ter MeulenV, et al. (1987) Altered transcription of a defective measles virus genome derived from a diseased human brain. EMBO J 6: 681.
45. PlumetS, DuprexWP, GerlierD (2005) Dynamics of viral RNA synthesis during measles virus infection. J Virol 79: 6900–6908.
46. MottetG, CurranJ, RouxL (1990) Intracellular stability of nonreplicating paramyxovirus nucleocapsids. Virology 176: 1–7.
47. CalainP, CurranJ, KolakofskyD, RouxL (1992) Molecular cloning of natural paramyxovirus copy-back defective interfering RNAs and their expression from DNA. Virology 191: 62–71.
48. CalainP, RouxL (1988) Generation of measles virus defective interfering particles and their presence in a preparation of attenuated live-virus vaccine. J Virol 62: 2859–2866.
49. PfallerCK, RadekeMJ, CattaneoR, SamuelCE (2014) Measles Virus C Protein Impairs Production of Defective Copyback Double-Stranded Viral RNA and Activation of Protein Kinase R. J Virol 88: 456–468.
50. RimaB, DavidsonW, MartinS (1977) The role of defective interfering particles in persistent infection of Vero cells by measles virus. J Gen Virol 35: 89–97.
51. WhistlerT, BelliniWJ, RotaP (1996) Generation of defective interfering particles by two vaccine strains of measles virus. Virology 220: 480–484.
52. WoodHM, BelvedereO, ConwayC, DalyC, ChalkleyR, et al. (2010) Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens. Nucleic Acids Res 38: e151–e151.
53. LorenzR, BernhartSH, Zu SiederdissenCH, TaferH, FlammC, et al. (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6: 26.
54. DeddoucheS, GoubauD, RehwinkelJ, ChakravartyP, BegumS, et al. (2014) Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells. eLife 3: e01535.
55. BlumbergBM, LeppertM, KolakofskyD (1981) Interaction of VSV leader RNA and nucleocapsid protein may control VSV genome replication. Cell 23: 837–845.
56. Mottet-OsmanG, IseniF, PeletT, WiznerowiczM, GarcinD, et al. (2007) Suppression of the Sendai virus M protein through a novel short interfering RNA approach inhibits viral particle production but does not affect viral RNA synthesis. J Virol 81: 2861–2868.
57. ReuterT, WeissbrichB, Schneider-SchauliesS, Schneider-SchauliesJ (2006) RNA interference with measles virus N, P, and L mRNAs efficiently prevents and with matrix protein mRNA enhances viral transcription. J Virol 80: 5951–5957.
58. VidalS, KolakofskyD (1989) Modified model for the switch from Sendai virus transcription to replication. J Virol 63: 1951–1958.
59. AblasserA, BauernfeindF, HartmannG, LatzE, FitzgeraldKA, et al. (2009) RIG-I-dependent sensing of poly (dA: dT) through the induction of an RNA polymerase III–transcribed RNA intermediate. Nat Immunol 10: 1065–1072.
60. PatelJR, JainA, ChouYy, BaumA, HaT, et al. (2013) ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon. EMBO reports 14: 780–787.
61. GorbalenyaAE, KooninEV, DonchenkoAP, BlinovVM (1989) Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 17: 4713–4730.
62. RandallRE, GoodbournS (2008) Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89: 1–47.
63. Gerlier D, Valentin H (2009) Measles virus interaction with host cells and impact on innate immunity. Measles: Springer. pp. 163–191.
64. LangmeadB, TrapnellC, PopM, SalzbergSL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.
65. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.
66. PlumetS, GerlierD (2005) Optimized SYBR green real-time PCR assay to quantify the absolute copy number of measles virus RNAs using gene specific primers. J Virol Methods 128: 79–87.
67. SparrerKM, PfallerCK, ConzelmannK-K (2012) Measles virus C protein interferes with Beta interferon transcription in the nucleus. J Virol 86: 796–805.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 4
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The 2010 Cholera Outbreak in Haiti: How Science Solved a Controversy
- Coxsackievirus-Induced miR-21 Disrupts Cardiomyocyte Interactions via the Downregulation of Intercalated Disk Components
- An Overview of Respiratory Syncytial Virus
- , , , Genetic Variability: Cryptic Biological Species or Clonal Near-Clades?