Caspase-1-Like Regulation of the proPO-System and Role of ppA and Caspase-1-Like Cleaved Peptides from proPO in Innate Immunity
Melanization is an important reaction in most multicellular organisms, both animals and plants. The initiation steps of this reaction in invertebrates are catalyzed by the prophenoloxidase (proPO) activating system a proteolytic enzyme cascade, which primary function is to recognize cell wall products from microorganisms and respond by activation of the system and generation of immune effector molecules. This cascade requires careful regulation to achieve spatial and temporal control to avoid dangerous side effects. We here show that a Caspase1-like enzyme can inactivate proPO when ppA is not activating the proPO to avoid deleterious effects and further we show for the first time that the N-terminal peptide from ppA cleavage of proPO (activation of proPO) has an important biological function as also the Caspase1 cleaved fragments. Our results also show that Caspase 1-induced inflammatory response is evolutionarily conserved and is linked to melanization.
Vyšlo v časopise:
Caspase-1-Like Regulation of the proPO-System and Role of ppA and Caspase-1-Like Cleaved Peptides from proPO in Innate Immunity. PLoS Pathog 10(4): e32767. doi:10.1371/journal.ppat.1004059
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004059
Souhrn
Melanization is an important reaction in most multicellular organisms, both animals and plants. The initiation steps of this reaction in invertebrates are catalyzed by the prophenoloxidase (proPO) activating system a proteolytic enzyme cascade, which primary function is to recognize cell wall products from microorganisms and respond by activation of the system and generation of immune effector molecules. This cascade requires careful regulation to achieve spatial and temporal control to avoid dangerous side effects. We here show that a Caspase1-like enzyme can inactivate proPO when ppA is not activating the proPO to avoid deleterious effects and further we show for the first time that the N-terminal peptide from ppA cleavage of proPO (activation of proPO) has an important biological function as also the Caspase1 cleaved fragments. Our results also show that Caspase 1-induced inflammatory response is evolutionarily conserved and is linked to melanization.
Zdroje
1. CereniusL, LeeBL, SöderhällK (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29: 263–271.
2. LiangZ, SöderhällK (1995) Isolation of cDNA encoding a novel serpin of crayfish hemocytes. Comp Biochem Physiol B Biochem Mol Biol 112: 385–391.
3. AngthongP, WatthanasurorotA, KlinbungaS, RuangdejU, SöderhällI, et al. (2010) Cloning and characterization of a melanization inhibition protein (PmMIP) of the black tiger shrimp, Penaeus monodon. Fish Shellfish Immunol 29: 464–468.
4. ZhaoM, SöderhällI, ParkJW, MaYG, OsakiT, et al. (2005) A novel 43-kDa protein as a negative regulatory component of phenoloxidase-induced melanin synthesis. J Biol Chem 280: 24744–24751.
5. SöderhällI, WuC, NovotnyM, LeeBL, SöderhällK (2009) A novel protein acts as a negative regulator of prophenoloxidase activation and melanization in the freshwater crayfish Pacifastacus leniusculus. J Biol Chem 284: 6301–6310.
6. LuZ, BeckMH, WangY, JiangH, StrandM-R (2008) The viral protein Egf1.0 is a dual activity inhibitor of prophenoloxidase-activating proteinases 1 and 3 from Manduca sexta. J Biol Chem 283: 21325–21333.
7. ColinetD, DubuffetA, CazesD, MoreauS, DrezenJM, et al. (2009) A serpin from the parasitoid wasp Leptopilina boulardi targets the Drosophila phenoloxidase cascade. Dev Comp Immunol 33: 681–689.
8. EleftherianosI, BoundyS, JoyceSA, AslamS, MarshallJW, et al. (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA 88: 10362–10366.
9. LiuH, JiravanichpaisalP, CereniusL, LeeBL, SöderhällI, et al. (2007) Phenoloxidase is an important component of the defense against Aeromonas hydrophila Infection in a crustacean, Pacifastacus leniusculus. J Biol Chem 282: 33593–33598.
10. KanH, KimCH, KwonHM, ParkJW, RohKB, et al. (2010) Molecular control of phenoloxidase-induced melanin synthesis in an insect. J Biol Chem 283: 25316–25323.
11. FelföldiG, EleftherianosI, Ffrench-ConstantRH, VenekeiI (2011) A serine proteinase homologue, SPH-3, plays a central role in insect immunity. J Immunol 186: 4828–4834.
12. LigoxygakisP, PelteN, JiC, LeclercV, DuvicB, et al. (2002) A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO J 21: 6330–6337.
13. RiedlSJ, ShiY (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5: 897–907.
14. SollbergerG, StrittmatterGE, KistowskaM, FrenchLE, BeerHD (2012) Caspase-4 is required for activation of inflammasomes. J Immunol 188: 1992–2000.
15. KellerM, RüeggA, WernerS, BeerHD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132: 818–831.
16. LamkanfiM, KalaiM, SaelensX, DeclercqW, VandenabeeleP (2004) Caspase-1 activates nuclear factor of the κ-enhance in B cells independently of its enzymatic activity. J Biol Chem 279: 24785–24793.
17. LatzE, XiaoTS, StutzA (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13: 397–411.
18. SricharoenS, KimJJ, Tunkijjanukij, SöderhällI (2005) Exoytosis and proteomic analysis of the vesicle content of granular hemocytes from a crayfish. Dev Comp Immunol 29: 1017–1031.
19. BidlaG, DushayMS, TheopoldU (2007) Crystal cell rupture after injury in Drosophila requires the JNK pathway, small GTPases and the TNF homolog Eiger. J Cell Sci 120: 1209–15.
20. ShresthaS, KimY (2008) Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem Mol Biol 38: 99–112.
21. NickelW, RabouilleC (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10: 148–155.
22. SollbergerG, StrittmatterGE, GarstkiewiczM, SandJ, BeerHD (2013) Caspase-1: The inflammasome and beyond. Innate Immun 20: 115–25 doi:10.1177/1753425913484374
23. WalshJG, LogueSE, LüthiAU, MartinSJ (2011) Caspase-1 promiscuity is counterbalanced by rapid inactivation of processed enzyme. J Biol Chem 286: 32513–32524.
24. SaeleeN, NooninC, NupanB, JunkunloK, PhongdaraA, et al. (2013) β-thymosins and hemocyte homeostasis in a crustacean. PLoS One 8(4): e60974.
25. AspánA, HuangTS, CereniusL, SöderhällK (1995) cDNA cloning of prophenoloxidase from the freshwater crayfish Pacifastacus leniusculus and its activation. Proc Natl Acad Sci USA 92: 939–943.
26. DubyakGR (2012) P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell Microbiol 14: 1697–1706.
27. CereniusL, BabuR, SöderhällK, JiravanichpaisalP (2010) In vitro effects on bacterial growth of phenoloxidase reaction products. J Invertebr Pathol 103: 21–23.
28. CereniusL, KawabataS, LeeBL, NonakaM, SöderhällK (2010) Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem Sci 35: 575–583.
29. KanostMR, JiangH, YuXQ (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 198: 97–105.
30. YuanS, YuX, TopfM, DorstynL, KumarS, et al. (2011) Structure of the Drosophila apoptosome at 6.9 å resolution. Structure 19: 128–140.
31. LeeSY, LeeBL, SöderhällK (2004) Processing of crayfish hemocyanin subunits into phenoloxidase. Biochem Biophys Res Commun 322: 490–496.
32. PasupuletiM, DavoudiM, MalmstenM, SchmidtchenA (2009) Antimicrobial activity of a C-terminal peptide from human extracellular superoxide dismutase. BMC Res Notes 2: 136.
33. TorrentM, PulidoD, NoguésMV, BoixE (2012) Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation. PLoS Pathog 8(11): e1003005.
34. BenliM, YigitN (2008) Antibacterial activity of venom from funnel web spider Agelena labyrinthica (Araneae: Agelenidae). J Venom Anim Toxins incl Trop Dis 14: 641–650.
35. LinX, SöderhällK, SöderhällI (2011) Invertebrate hematopoiesis: an astakine-dependent novel hematopoietic factor. J Immunol 186: 2073–2079.
36. PétrilliV, DostertC, MuruveDA, TschoppJ (2007) The inflammasome: a danger sensing comlex triggering innate immunity. Curr Opin Immunol 19: 615–622.
37. DostertC, LudigsK, GuardaG (2013) Innate and adaptive effects of inflammasomes on T cell responses. Curr Opin Immunol 25: 1–7.
38. JiravanichpaisalP, RoosS, EdsmanL, LiuH, SöderhällK (2009) A highly virulent pathogen, Aeromonas hydrophila, from the freshwater crayfish Pacifastacus leniusculus. J Invertebr Pathol 101: 56–66.
39. WuC, SöderhällK, SöderhällI (2011) Two novel ficolin-like proteins act as pattern recognition receptors for invading pathogens in the freshwater crayfish Pacifastacus leniusculus. Proteomics 11: 2249–2264.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 4
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The 2010 Cholera Outbreak in Haiti: How Science Solved a Controversy
- Coxsackievirus-Induced miR-21 Disrupts Cardiomyocyte Interactions via the Downregulation of Intercalated Disk Components
- An Overview of Respiratory Syncytial Virus
- , , , Genetic Variability: Cryptic Biological Species or Clonal Near-Clades?