Vaginitis: When Opportunism Knocks, the Host Responds
article has not abstract
Vyšlo v časopise:
Vaginitis: When Opportunism Knocks, the Host Responds. PLoS Pathog 10(4): e32767. doi:10.1371/journal.ppat.1003965
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003965
Souhrn
article has not abstract
Zdroje
1. AchkarJM, FriesBC (2010) Candida infections of the genitourinary tract. Clin Microbiol Rev 23: 253–273.
2. SobelJD (1997) Vaginitis. N Engl J Med 337: 1896–1903.
3. SobelJD, ZervosM, ReedBD, HootonT, SoperD, et al. (2003) Fluconazole susceptibility of vaginal isolates obtained from women with complicated Candida vaginitis: clinical implications. Antimicrob Agents Chemother 47: 34–38.
4. FoxmanB, BarlowR, D'ArcyH, GillespieB, SobelJD (2000) Candida vaginitis: self-reported incidence and associated costs. Sex Transm Dis 27: 230–235.
5. AshmanRB (2008) Protective and pathologic immune responses against Candida albicans infection. Front Biosci 13: 3334–3351.
6. FidelPLJr, LynchME, Redondo-LopezV, SobelJD, RobinsonR (1993) Systemic cell-mediated immune reactivity in women with recurrent vulvovaginal candidiasis. J Infect Dis 168: 1458–1465.
7. FongIW, McClearyP, ReadS (1992) Cellular immunity of patients with recurrent or refractory vulvovaginal moniliasis. Am J Obstet Gynecol 166: 887–890.
8. MendlingW, KoldovskyU (1996) Investigations by cell-mediated immunologic tests and therapeutic trials with thymopentin in vaginal mycoses. Infect Dis Obstet Gynecol 4: 225–231.
9. TaylorBN, SaavedraM, FidelPLJr (2000) Local Th1/Th2 cytokine production during experimental vaginal candidiasis: potential importance of transforming growth factor-beta. Med Mycol 38: 419–431.
10. WormleyFLJr, SteeleC, WozniakK, FujihashiK, McGheeJR, et al. (2001) Resistance of T-cell receptor delta-chain-deficient mice to experimental Candida albicans vaginitis. Infect Immun 69: 7162–7164.
11. ContiHR, ShenF, NayyarN, StocumE, SunJN, et al. (2009) Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 206: 299–311.
12. PietrellaD, RachiniA, PinesM, PandeyN, MosciP, et al. (2011) Th17 cells and IL-17 in protective immunity to vaginal candidiasis. PLoS ONE 6: e22770.
13. YanoJ, KollsJK, HappelKI, WormleyF, WozniakKL, et al. (2012) The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway. PLoS ONE 7: e46311.
14. de BernardisF, SantoniG, BoccaneraM, SpreghiniE, AdrianiD, et al. (2000) Local anticandidal immune responses in a rat model of vaginal infection by and protection against Candida albicans. Infect Immun 68: 3297–3304.
15. FidelPLJr, BarousseM, EspinosaT, FicarraM, SturtevantJ, et al. (2004) An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun 72: 2939–2946.
16. BlackCA, EyersFM, RussellA, DunkleyML, ClancyRL, et al. (1998) Acute neutropenia decreases inflammation associated with murine vaginal candidiasis but has no effect on the course of infection. Infect Immun 66: 1273–1275.
17. PetersBM, PalmerGE, FidelPLJr, NoverrMC (2014) Fungal morphogenetic pathways are required for the hallmark inflammatory response during Candida vaginitis. Infect Immun 82: 532–543.
18. YanoJ, LillyE, BarousseM, FidelPLJr (2010) Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect Immun 78: 5126–5137.
19. YanoJ, PalmerGE, EberleKE, PetersBM, VoglT, et al. (2014) Vaginal epithelial cell-derived S100 alarmins induced by C. albicans via pattern recognition receptor interactions is sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis. Infect Immun 82: 783–792.
20. NeteaMG, BrownGD, KullbergBJ, GowNA (2008) An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6: 67–78.
21. FerwerdaB, FerwerdaG, PlantingaTS, WillmentJA, van SprielAB, et al. (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361: 1760–1767.
22. RosentulDC, PlantingaTS, OostingM, ScottWK, Velez EdwardsDR, et al. (2011) Genetic variation in the Dectin-1/CARD9 recognition pathway and susceptibility to candidemia. J Infect Dis 204: 1138–1145.
23. BabulaO, LazdaneG, KroicaJ, LedgerWJ, WitkinSS (2003) Relation between recurrent vulvovaginal candidiasis, vaginal concentrations of mannose-binding lectin, and a mannose-binding lectin gene polymorphism in Latvian women. Clin Infect Dis 37: 733–737.
24. DondersGG, BabulaO, BellenG, LinharesIM, WitkinSS (2008) Mannose-binding lectin gene polymorphism and resistance to therapy in women with recurrent vulvovaginal candidiasis. BJOG 115: 1225–1231.
25. BiswasS, Van DijckP, DattaA (2007) Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 71: 348–376.
26. MoyesDL, MurcianoC, RunglallM, IslamA, ThavarajS, et al. (2011) Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells. PLoS ONE 6: e26580.
27. TaylorBN, StaibP, BinderA, BiesemeierA, SehnalM, et al. (2005) Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection. Infect Immun 73: 1828–1835.
28. SchallerM, BorelliC, KortingHC, HubeB (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48: 365–377.
29. HarriottMM, LillyEA, RodriguezTE, FidelPLJr, NoverrMC (2010) Candida albicans forms biofilms on the vaginal mucosa. Microbiology 156: 3635–36344.
30. Hong E, Dixit S, Fidel PL, Bradford J, Fischer G (2013) Vulvovaginal candidiasis as a chronic disease: diagnostic criteria and definition. J Low Genit Tract Dis.
31. HamadM, Abu-ElteenKH, GhalebM (2004) Estrogen-dependent induction of persistent vaginal candidosis in naive mice. Mycoses 47: 304–309.
32. HickeyDK, FaheyJV, WiraCR (2013) Mouse estrous cycle regulation of vaginal versus uterine cytokines, chemokines, alpha-/beta-defensins and TLRs. Innate Immun 19: 121–131.
33. RellosoM, Aragoneses-FenollL, LasarteS, BourgeoisC, RomeraG, et al. (2012) Estradiol impairs the Th17 immune response against Candida albicans. J Leukoc Biol 91: 159–165.
34. WiraCR, FaheyJV, SentmanCL, PioliPA, ShenL (2005) Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol Rev 206: 306–335.
35. ChengG, YeaterKM, HoyerLL (2006) Cellular and molecular biology of Candida albicans estrogen response. Eukaryot Cell 5: 180–191.
36. HollmerC, EssmannM, AultK, LarsenB (2006) Adherence and blocking of Candida albicans to cultured vaginal epithelial cells: treatments to decrease adherence. Infect Dis Obstet Gynecol 2006: 98218.
37. MadaniND, MalloyPJ, Rodriguez-PomboP, KrishnanAV, FeldmanD (1994) Candida albicans estrogen-binding protein gene encodes an oxidoreductase that is inhibited by estradiol. Proc Natl Acad Sci U S A 91: 922–926.
38. ZhangX, EssmannM, BurtET, LarsenB (2000) Estrogen effects on Candida albicans: a potential virulence-regulating mechanism. J Infect Dis 181: 1441–1446.
39. VylkovaS, CarmanAJ, DanhofHA, ColletteJR, ZhouH, et al. (2011) The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio 2: e00055–00011.
40. MaB, ForneyLJ, RavelJ (2012) Vaginal microbiome: rethinking health and disease. Annu Rev Microbiol 66: 371–389.
41. BassoB, GimenezF, LopezC (2005) IL-1beta, IL-6 and IL-8 levels in gyneco-obstetric infections. Infect Dis Obstet Gynecol 13: 207–211.
42. MatzingerP (2002) The danger model: a renewed sense of self. Science 296: 301–305.
43. TomalkaJ, GanesanS, AzodiE, PatelK, MajmudarP, et al. (2011) A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog 7: e1002379.
44. De BernardisF, AmackerM, AranciaS, SandiniS, GremionC, et al. (2012) A virosomal vaccine against candidal vaginitis: immunogenicity, efficacy and safety profile in animal models. Vaccine 30: 4490–4498.
45. IbrahimAS, LuoG, GebremariamT, LeeH, SchmidtCS, et al. (2013) NDV-3 protects mice from vulvovaginal candidiasis through T- and B-cell immune response. Vaccine 31: 5549–5556.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 4
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- The 2010 Cholera Outbreak in Haiti: How Science Solved a Controversy
- , , , Genetic Variability: Cryptic Biological Species or Clonal Near-Clades?
- Efficient Parvovirus Replication Requires CRL4-Targeted Depletion of p21 to Prevent Its Inhibitory Interaction with PCNA
- An Overview of Respiratory Syncytial Virus