Rapid Response to Selection, Competitive Release and Increased Transmission Potential of Artesunate-Selected Malaria Parasites
The evolution of drug resistance is a major challenge facing medicine in the 21st century. In the case of malaria parasites, this is particularly apparent, as the introduction of each drug has been followed by the rapid development and spread of resistant parasites. Without a constant supply of new drugs to replace those that are no longer effective, it is important to understand the processes that lead to the selection and spread of resistance though a parasite population, so that the useful lifespan of current drugs can be maximized. Here, we use a rodent malaria model system to try to select for reduced susceptibility to the current frontline malaria drug, artemisinin. We then examine the growth and transmission potential of resistant parasites in single infections and in competition with susceptible parasites (mixed infections) in drug-treated hosts. We show that parasites selected for reduced susceptibility to drugs have increased fitness in both situations. Our results also indicate that the consequences of different treatment regimes on the rate of spread of resistance should be evaluated and taken into account during regime choice.
Vyšlo v časopise:
Rapid Response to Selection, Competitive Release and Increased Transmission Potential of Artesunate-Selected Malaria Parasites. PLoS Pathog 10(4): e32767. doi:10.1371/journal.ppat.1004019
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004019
Souhrn
The evolution of drug resistance is a major challenge facing medicine in the 21st century. In the case of malaria parasites, this is particularly apparent, as the introduction of each drug has been followed by the rapid development and spread of resistant parasites. Without a constant supply of new drugs to replace those that are no longer effective, it is important to understand the processes that lead to the selection and spread of resistance though a parasite population, so that the useful lifespan of current drugs can be maximized. Here, we use a rodent malaria model system to try to select for reduced susceptibility to the current frontline malaria drug, artemisinin. We then examine the growth and transmission potential of resistant parasites in single infections and in competition with susceptible parasites (mixed infections) in drug-treated hosts. We show that parasites selected for reduced susceptibility to drugs have increased fitness in both situations. Our results also indicate that the consequences of different treatment regimes on the rate of spread of resistance should be evaluated and taken into account during regime choice.
Zdroje
1. FrenchG (2005) Clinical impact and relevance of antibiotic resistance. Advanced drug delivery reviews 57: 1514–1527.
2. World Health Organization (2010) Guidelines for the treatment of malaria (World Health Organization, Geneva).
3. WongsrichanalaiC, PickardAL, WernsdorferWH, MeshnickSR (2002) Epidemiology of drug-resistant malaria. Lancet Infect Dis 2: 209–218.
4. GreenwoodB, MutabingwaT (2002) Malaria in 2002. Nature 415: 670–672.
5. WhiteNJ (2004) Antimalarial drug resistance. J Clin Invest 113: 1084–1092.
6. WhiteNJ (2008) Qinghaosu (artemisinin): the price of success. Science 320: 330–334.
7. NoedlH, SeY, SchaecherK, SmithB (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359: 2619–2620.
8. DondorpAM, NostenF, YiP, DasD, PhyoAP, et al. (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455–467.
9. AmaratungaC, SrengS, SuonS, PhelpsES, StepniewskaK, et al. (2012) Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis 12: 851–858.
10. AndersonTJC, NairS, NkhomaS, WilliamsJT, ImwongM, et al. (2010) High heritability of malaria parasite clearance rate indicates a genetic basis for artemisinin resistance in western Cambodia. J Infect Dis 201: 1326–1330.
11. CheesemanIH, MillerBA, NairS, NkhomaS, TanA, et al. (2012) A major genome region underlying artemisinin resistance in malaria. Science 336: 79–82.
12. PhyoAP, NkhomaS, StepniewskaK, AshleyEA, NairS, et al. (2012) Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379: 1960–1966.
13. KyawMP, NyuntMH, ChitK, AyeMM, AyeKH, et al. (2013) Reduced susceptibility of Plasmodium falciparum to artesunate in Southern Myanmar. PLoS ONE 8: e57689.
14. O'BrienC, HenrichPP, PassiN, FidockDA (2011) Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum. Curr Opin Infect Dis 24: 570–577.
15. OlliaroP, WellsTNC (2009) The global portfolio of new antimalarial medicines under development. Clin Pharmacol Ther 85: 584–595.
16. HenriquesG, MartinelliA, RodriguesL, ModrzynskaK, FawcettR, et al. (2013) Artemisinin resistance in rodent malaria - mutation in the AP2 adaptor mu-chain suggests involvement of endocytosis and membrane protein trafficking. Malar J 12: 118.
17. CarraraVI, LwinKM, PhyoAP, AshleyE, WiladphaingernJ, et al. (2013) Malaria burden and artemisinin resistance in the mobile and migrant population on the Thai–Myanmar border, 1999–2011: An observational study. PLoS Med 10: e1001398.
18. MeshnickS (2012) Perspective: artemisinin-resistant malaria and the wolf. Am J Trop Med Hyg 87: 783–784.
19. WhiteNJ (2012) Counter perspective: artemisinin resistance: facts, fears, and fables. Am J Trop Med Hyg 87: 785.
20. FerreiraPE, CulletonR, GilJP, MeshnickSR (2013) Artemisinin resistance in Plasmodium falciparum: what is it really? Trends Parasitol 29: 318–320.
21. KrishnaS, KremsnerPG (2013) Antidogmatic approaches to artemisinin resistance: reappraisal as treatment failure with artemisinin combination therapy. Trends Parasitol 29: 313–317.
22. DondorpAM, RingwaldP (2013) Artemisinin resistance is a clear and present danger. Trends Parasitol 29: 359–360.
23. HastingsIM, WatkinsWM (2006) Tolerance is the key to understanding antimalarial drug resistance. Trends Parasitol 22: 71–77.
24. StepniewskaK, WhiteNJ (2008) Pharmacokinetic determinants of the window of selection for antimalarial drug resistance. Antimicrob Agents Chemother 52: 1589–1596.
25. Wiesch zurPA, KouyosR, EngelstädterJ, RegoesRR, BonhoefferS (2011) Population biological principles of drug-resistance evolution in infectious diseases. Lancet Infect Dis 11: 236–247.
26. ReadAF, DayT, HuijbenS (2011) The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. Proc Natl Acad Sci USA 108: 10871–10877.
27. HarringtonW, MutabingwaT, MuehlenbachsA, SorensenB, BollaM, et al. (2009) Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment. Proc Natl Acad Sci USA 106: 9027–9032.
28. JulianoJJ, PorterK, MwapasaV, SemR, RogersWO, et al. (2010) Exposing malaria in-host diversity and estimating population diversity by capture-recapture using massively parallel pyrosequencing. Proc Natl Acad Sci USA 107: 20138–20143.
29. FärnertA (2008) Plasmodium falciparum population dynamics: only snapshots in time? Trends Parasitol 24: 340–344.
30. ReadAF, TaylorLH (2001) The ecology of genetically diverse infections. Science 292: 1099–1102.
31. MideoN (2009) Parasite adaptations to within-host competition. Trends Parasitol 25: 261–268.
32. PollittLC, MideoN, DrewDR, SchneiderP, ColegraveN, et al. (2011) Competition and the evolution of reproductive restraint in malaria parasites. Am Nat 177: 358–367.
33. WargoAR, HuijbenS, de RoodeJC, ShepherdJ, ReadAF (2007) Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model. Proc Natl Acad Sci USA 104: 19914–19919.
34. HuijbenS, SimDG, NelsonWA, ReadAF (2011) The fitness of drug-resistant malaria parasites in a rodent model: multiplicity of infection. J Evol Biol 24: 2410–2422.
35. HuijbenS, NelsonWA, WargoAR, SimDG, DrewDR, et al. (2010) Chemotherapy, within-host ecology and the fitness of drug-resistant malaria parasites. Evolution 64: 2952–2968.
36. HuijbenS, BellAS, SimDG, TomaselloD, MideoN, et al. (2013) Aggressive chemotherapy and the selection of drug resistant pathogens. PLoS Pathog 9: e1003578.
37. BabikerHA, SchneiderP, ReeceSE (2008) Gametocytes: insights gained during a decade of molecular monitoring. Trends Parasitol 24: 525–30.
38. ChengQ, KyleD, GattonML (2012) Artemisinin resistance in Plasmodium falciparum: A process linked to dormancy? Int J Parasitol Drugs Resist 1: 249–255.
39. TuckerMS, MutkaT, SparksK, PatelJ, KyleDE (2012) Phenotypic and genotypic analysis of In vitro-selected artemisinin-resistant progeny of Plasmodium falciparum. Antimicrob Agents Chemother 56: 302–304.
40. TeuscherF, ChenN, KyleDE, GattonML, ChengQ (2012) Phenotypic changes in artemisinin-resistant Plasmodium falciparum lines In vitro: Evidence for decreased sensitivity to dormancy and growth inhibition. Antimicrob Agents Chemother 56: 428–431.
41. BellAS, HuijbenS, PaaijmansKP, SimDG, ChanBHK, et al. (2012) Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria. PLoS ONE 7: e37172.
42. StepniewskaK, AshleyE, LeeSJ, AnsteyN, BarnesKI, et al. (2010) In vivo parasitological measures of artemisinin susceptibility. J Infect Dis 201: 570–579.
43. SowunmiA, AdewoyeEO, GbotshoGO, HappiCT, SijuadeA, et al. (2010) Factors contributing to delay in parasite clearance in uncomplicated falciparum malaria in children. Malar J 9: 53.
44. AndersonT, NkhomaS, EckerA, FidockD (2011) How can we identify parasite genes that underlie antimalarial drug resistance? Pharmacogenomics 12: 59–85.
45. DondorpAM, YeungS, WhiteL, NguonC, DayNPJ, et al. (2010) Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol 8: 272–280.
46. SaralambaS, Pan-NgumW, MaudeRJ, LeeSJ, TarningJ, et al. (2011) Intrahost modeling of artemisinin resistance in Plasmodium falciparum. Proc Natl Acad Sci USA 108: 397–402.
47. WhiteNJ (2011) The parasite clearance curve. Malar J 10: 278.
48. LaCrueAN, ScheelM, KennedyK, KumarN, KyleDE (2011) Effects of artesunate on parasite recrudescence and dormancy in the rodent malaria model Plasmodium vinckei. PLoS one 6: e26689.
49. O'DonnellAJ, SchneiderP, McWattersHG, ReeceSE (2011) Fitness costs of disrupting circadian rhythms in malaria parasites. Proc R Soc Lond B Biol Sci 278: 2429–2436.
50. DasD, TripuraR, PhyoAP, LwinKM, TarningJ, et al. (2013) Effect of high-dose or split-dose artesunate on parasite clearance in artemisinin-resistant falciparum malaria. Clin Infect Dis 56: e48–e58.
51. AndersonTJC, WilliamsJT, NairS, SudimackD, BarendsM, et al. (2010) Inferred relatedness and heritability in malaria parasites. Proc R Soc Lond B Biol Sci 277: 2531–2540.
52. WitkowskiB, LelièvreJ, BarragánMJL, LaurentV, SuX-Z, et al. (2010) Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother 54: 1872.
53. BellAS, de RoodeJC, SimD, ReadAF (2006) Within-host competition in genetically diverse malaria infections: parasite virulence and competitive success. Evolution 60: 1358–1371.
54. de RoodeJC, PansiniR, CheesmanSJ, HelinskiMEH, HuijbenS, et al. (2005) Virulence and competitive ability in genetically diverse malaria infections. Proc Natl Acad Sci USA 102: 7624–7628.
55. HastingsIM (2011) Why we should effectively treat malaria. Trends Parasitol 27: 51–52.
56. GoncalvesBPA, PaulR (2011) Sub-clearance treatment to slow malaria drug resistance? Trends Parasitol 27: 50–51.
57. AntaoT (2011) Evolutionary parasitology applied to control and elimination policies. Trends Parasitol 27: 232–233.
58. WitkowskiB, LelièvreJ, Nicolau-TraversM-L, IriartX, Njomnang SohP, et al. (2012) Evidence for the contribution of the hemozoin synthesis pathway of the murine Plasmodium yoelii to the resistance to artemisinin-related drugs. PLoS ONE 7: e32620.
59. XiaoS-H, YaoJ-M, UtzingerJ, CaiY, CholletJ, et al. (2004) Selection and reversal of Plasmodium berghei resistance in the mouse model following repeated high doses of artemether. Parasitol Res 92: 215–219.
60. CoddA, TeuscherF, KyleDE, ChengQ, GattonML (2011) Artemisinin-induced parasite dormancy: a plausible mechanism for treatment failure. Malar J 10: 56.
61. TeuscherF, GattonML, ChenN, PetersJ, KyleDE, et al. (2010) Artemisinin induced dormancy in Plasmodium falciparum: Duration, recovery rates and implications in treatment failure. J Infect Dis 202: 1362–1368.
62. DaubersiesP, SallenaveSalesS, MagneS, TrapeJF, ContaminH, et al. (1996) Rapid turnover of Plasmodium falciparum populations in asymptomatic individuals living in a high transmission area. Am J Trop Med Hyg 54: 18–26.
63. Mercereau-PuijalonO (1996) Revisiting host–parasite interactions: molecular analysis of parasites collected during longitudinal and cross-sectional surveys in humans. Parasite Immunol 18: 173–180.
64. SmithT, FelgerI, TannerM, BeckH-P (1999) Premunition in Plasmodium falciparum infection: insights from the epidemiology of multiple infections. Trans R Soc Trop Med Hyg 93: S59–S64.
65. BruceMC, DonnellyCA, AlpersMP, GalinskiMR, BarnwellJW, et al. (2000) Cross-species interactions between malaria parasites in humans. Science 287: 845–848.
66. HastingsIM (2003) Malaria control and the evolution of drug resistance: an intriguing link. Trends Parasitol 19: 70–73.
67. TalisunaAO, ErhartA, SamarasingheS, Van OvermeirC, SpeybroeckN, et al. (2006) Malaria transmission intensity and the rate of spread of chloroquine resistant Plasmodium falciparum: why have theoretical models generated conflicting results? Infect Genet Evol 6: 241–248.
68. BousemaJT, DrakeleyCJ, MensPF, ArensT, HoubenR, et al. (2008) Increased Plasmodium falciparum gametocyte production in mixed infections with P. malariae. Am J Trop Med Hyg 78: 442–448.
69. BaliraineFN, AfraneYA, AmenyaDA, BonizzoniM, Vardo-ZalikAM, et al. (2010) A cohort study of Plasmodium falciparum infection dynamics in Western Kenya Highlands. BMC Infect Dis 10: 283.
70. CarterR (1978) Studies on enzyme variation in the murine malaria parasites Plasmodium berghei, P. yoelii, P. vinckei and P. chabaudi by starch gel electrophoresis. Parasitology 76: 241–267.
71. JacobsRL (1964) Role of P-Aminobenzoic acid in Plasmodium berghei infection in the mouse. Exp Parasitol 15: 213–225.
72. PuriSK, ChandraR (2006) Plasmodium vinckei: Selection of a strain exhibiting stable resistance to artemether. Exp Parasitol 114: 129–132.
73. PetersW, RobinsonBL (1999) The chemotherapy of rodent malaria. LVI. Studies on the development of resistance to natural and synthetic endoperoxides. Ann Trop Med Parasitol 93: 325–329.
74. AfonsoA, HuntP, CheesmanS, AlvesAC, CunhaCV, et al. (2006) Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob Agents Chemother 50: 480–489.
75. FergusonHM, MackinnonMJ, ChanBH, ReadAF (2003) Mosquito mortality and the evolution of malaria virulence. Evolution 57: 2792–2804.
76. FleggJA, GuerinPJ, WhiteNJ, StepniewskaK (2011) Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator. Malar J 10: 339.
77. DrewDR, ReeceSE (2007) Development of reverse-transcription PCR techniques to analyse the density and sex ratio of gametocytes in genetically diverse Plasmodium chabaudi infections. Mol Biochem Parasitol 156: 199–209.
78. PollittLC, ReeceSE, MideoN, NusseyDH, ColegraveN (2012) The problem of auto-correlation in parasitology. PLoS Pathog 8: e1002590.
79. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2011) Mixed effects models and extensions in ecology with R. New York: Springer Science and Business Media.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 4
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The 2010 Cholera Outbreak in Haiti: How Science Solved a Controversy
- Coxsackievirus-Induced miR-21 Disrupts Cardiomyocyte Interactions via the Downregulation of Intercalated Disk Components
- An Overview of Respiratory Syncytial Virus
- , , , Genetic Variability: Cryptic Biological Species or Clonal Near-Clades?