Pernicious Pathogens or Expedient Elements of Inheritance: The Significance of Yeast Prions
article has not abstract
Vyšlo v časopise:
Pernicious Pathogens or Expedient Elements of Inheritance: The Significance of Yeast Prions. PLoS Pathog 10(4): e32767. doi:10.1371/journal.ppat.1003992
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003992
Souhrn
article has not abstract
Zdroje
1. CollingeJ (2001) Prion diseases of humans and animals: Their causes and molecular basis. Ann Rev Neurosci 24: 519–550.
2. LiebmanSW, ChernoffYO (2012) Prions in Yeast. Genetics 191: 1041–1072.
3. TrueHL, LindquistSL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407: 477–483.
4. ChernoffYO, GalkinAP, LewitinE, ChernovaTA, NewnamGP, et al. (2000) Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol Microbiol 35: 865–876.
5. NakayashikiT, EbiharaK, BannaiH, NakamuraY (2001) Yeast [PSI+] “Prions” that Are Crosstransmissible and Susceptible beyond a Species Barrier through a Quasi-Prion State. Mol Cell 7: 1121–1130.
6. LancasterAK, BardillJP, TrueHL, MaselJ (2010) The Spontaneous Appearance Rate of the Yeast Prion [PSI+] and Its Implications for the Evolution of the Evolvability Properties of the [PSI+] System. Genetics 184: 393–400.
7. KingOD, MaselJ (2007) The evolution of bet-hedging adaptations to rare scenarios. Theor Popul Biol 72: 560–575.
8. NakayashikiT, KurtzmanCP, EdskesHK, WicknerRB (2005) Yeast prions [URE3] and [PSI+] are diseases. Proc Natl Acad Sci 102: 10575–10580.
9. HalfmannR, JaroszDF, JonesSK, ChangA, LancasterAK, et al. (2012) Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482: 363–368.
10. KellyAC, ShewmakerFP, KryndushkinD, WicknerRB (2012) Sex, prions, and plasmids in yeast. Proc Natl Acad Sci USA 109: 2683–90.
11. KellyAC, WicknerRB (2013) Saccharomyces cerevisiae: A sexy yeast with a prion problem. Prion 7: 215–220.
12. TsaiIJ, BensassonD, BurtA, KoufopanouV (2008) Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. Proc Natl Acad Sci USA 105: 4957–4962.
13. RuderferDM, PrattSC, SeidelHS, KruglyakL (2006) Population genomic analysis of outcrossing and recombination in yeast. Nat Genet 38: 1077–1081.
14. LiebmanSW, BagriantsevSN, DerkatchIL (2006) Biochemical and genetic methods for characterization of [PIN+] prions in yeast. Methods 39: 23–34.
15. HolmesDL, LancasterAK, LindquistS, HalfmannR (2013) Heritable Remodeling of Yeast Multicellularity by an Environmentally Responsive Prion. Cell 153: 153–165.
16. TrueHL, BerlinI, LindquistSL (2004) Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431: 184–187.
17. McGlincheyRP, KryndushkinD, WicknerRB (2011) Suicidal [PSI+] is a lethal yeast prion. Proc Natl Acad Sci USA 108: 5337–5341.
18. Watson JD, Baker TA, Bell SP, Gann A, Levine M, et al.. (2013) Molecular Biology of the Gene. San Francisco: Pearson/Benjamin Cummings.
19. TanakaM, CollinsSR, ToyamaBH, WeissmanJS (2006) The physical basis of how prion conformations determine strain phenotypes. Nat Cell Biol 442: 585–589.
20. CoustouV, DeleuC, SaupeS, BegueretJ (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94: 9773–9778.
21. WicknerRB, EdskesHK, ShewmakerF, NakayashikiT (2007) Prions of fungi: Inherited structures and biological roles. Nat Rev Microbiol 5: 611–618.
22. HalfmannR, AlbertiS, LindquistS (2010) Prions, protein homeostasis, and phenotypic diversity. Trends Cell Biol 20: 125–133.
23. TyedmersJ, MadariagaML, LindquistS (2008) Prion Switching in Response to Environmental Stress. PLOS Biol 6: e294.
24. SuzukiG, ShimazuN, TanakaM (2012) A Yeast Prion, Mod5, Promotes Acquired Drug Resistance and Cell Survival Under Environmental Stress. Science 336: 355–359.
25. HalfmannR, LindquistS (2010) Epigenetics in the Extreme: Prions and the Inheritance of Environmentally Acquired Traits. Science 330: 629–632.
26. OlsonMV (1999) When less is more: Gene loss as an engine of evolutionary change. Am J Hum Genet 64: 18–23.
27. MorrisJJ, LenskiRE, ZinserER (2012) The Black Queen Hypothesis: Evolution of Dependencies through Adaptive Gene Loss. mBio 3: e00036–12.
28. SeuringC, GreenwaldJ, WasmerC, WepfR, SaupeSJ, et al. (2012) The Mechanism of Toxicity in HET-S/HET-s Prion Incompatibility. PLOS Biol 10: e1001451.
29. BrownJCS, LindquistS (2009) A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev 23: 2320–2332.
30. MajumdarA, CesarioWC, White-GrindleyE, JiangH, RenF, et al. (2012) Critical Role of Amyloid-like Oligomers of Drosophila Orb2 in the Persistence of Memory. Cell 148: 515–529.
31. AnderssonDI, LevinBR (1999) The biological cost of antibiotic resistance. Curr Opin Microbiol 2: 489–493.
32. LancasterAK, MaselJ (2009) The evolution of reversible switches in the presence of irreversible mimics. Evolution (NY) 63: 2350–2362.
33. NewbyGA, LindquistS (2013) Blessings in disguise: Biological benefits of prion-like mechanisms. Trends Cell Biol 23: 251–259.
34. AllisonAC (1954) Protection afforded by sickle-cell trait against subtertian malarial infection. Br Med J 1: 290–294.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 4
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The 2010 Cholera Outbreak in Haiti: How Science Solved a Controversy
- Coxsackievirus-Induced miR-21 Disrupts Cardiomyocyte Interactions via the Downregulation of Intercalated Disk Components
- An Overview of Respiratory Syncytial Virus
- , , , Genetic Variability: Cryptic Biological Species or Clonal Near-Clades?