#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A MATE-Family Efflux Pump Rescues the 8-Oxoguanine-Repair-Deficient Mutator Phenotype and Protects Against HO Killing


Hypermutation may accelerate bacterial evolution in the short-term. In the long-term, however, hypermutators (cells with an increased rate of mutation) can be expected to be at a disadvantage due to the accumulation of deleterious mutations. Therefore, in theory, hypermutators are doomed to extinction unless they compensate the elevated mutational burden (deleterious load). Different mechanisms capable of restoring a low mutation rate to hypermutators have been proposed. By choosing an 8-oxoguanine-repair-deficient (GO-deficient) Escherichia coli strain as a hypermutator model, we investigated the existence of genes able to rescue the hypermutable phenotype by multicopy suppression. Using an in vivo-generated mini-MudII4042 genomic library and a mutator screen, we obtained chromosomal fragments that decrease the rate of mutation in a mutT-deficient strain. Analysis of a selected clone showed that the expression of NorM is responsible for the decreased mutation rate in 8-oxoguanine-repair-deficient (mutT, mutY, and mutM mutY) strains. NorM is a member of the multidrug and toxin extrusion (MATE) family of efflux pumps whose role in E. coli cell physiology remains unknown. Our results indicate that NorM may act as a GO-system backup decreasing AT to CG and GC to TA transversions. In addition, the ability of NorM to reduce the level of intracellular reactive oxygen species (ROS) in a GO-deficient strain and protect the cell from oxidative stress, including protein carbonylation, suggests that it can extrude specific molecules—byproducts of bacterial metabolism—that oxidize the guanine present in both DNA and nucleotide pools. Altogether, our results indicate that NorM protects the cell from specific ROS when the GO system cannot cope with the damage.


Vyšlo v časopise: A MATE-Family Efflux Pump Rescues the 8-Oxoguanine-Repair-Deficient Mutator Phenotype and Protects Against HO Killing. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000931
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000931

Souhrn

Hypermutation may accelerate bacterial evolution in the short-term. In the long-term, however, hypermutators (cells with an increased rate of mutation) can be expected to be at a disadvantage due to the accumulation of deleterious mutations. Therefore, in theory, hypermutators are doomed to extinction unless they compensate the elevated mutational burden (deleterious load). Different mechanisms capable of restoring a low mutation rate to hypermutators have been proposed. By choosing an 8-oxoguanine-repair-deficient (GO-deficient) Escherichia coli strain as a hypermutator model, we investigated the existence of genes able to rescue the hypermutable phenotype by multicopy suppression. Using an in vivo-generated mini-MudII4042 genomic library and a mutator screen, we obtained chromosomal fragments that decrease the rate of mutation in a mutT-deficient strain. Analysis of a selected clone showed that the expression of NorM is responsible for the decreased mutation rate in 8-oxoguanine-repair-deficient (mutT, mutY, and mutM mutY) strains. NorM is a member of the multidrug and toxin extrusion (MATE) family of efflux pumps whose role in E. coli cell physiology remains unknown. Our results indicate that NorM may act as a GO-system backup decreasing AT to CG and GC to TA transversions. In addition, the ability of NorM to reduce the level of intracellular reactive oxygen species (ROS) in a GO-deficient strain and protect the cell from oxidative stress, including protein carbonylation, suggests that it can extrude specific molecules—byproducts of bacterial metabolism—that oxidize the guanine present in both DNA and nucleotide pools. Altogether, our results indicate that NorM protects the cell from specific ROS when the GO system cannot cope with the damage.


Zdroje

1. ModrichP

LahueR

1996 Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65 101 133

2. FriedbergE

WalkerG

SeideW

WoodR

SchultzR

2006 DNA Repair and Mutagenesis Washington DC, USA American Society of Microbiology

3. MichaelsML

MillerJH

1992 The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol 174 6321 6325

4. WoodML

EsteveA

MorningstarML

KuziemkoGM

EssigmannJM

1992 Genetic effects of oxidative DNA damage: comparative mutagenesis of 7,8-dihydro-8-oxoguanine and 7,8-dihydro-8-oxoadenine in Escherichia coli. Nucleic Acids Res 20 6023 6032

5. ChengKC

CahillDS

KasaiH

NishimuraS

LoebLA

1992 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G-T and A-C substitutions. J Biol Chem 267 166 172

6. GrossMD

SiegelEC

1981 Incidence of mutator strains in Escherichia coli and coliforms in nature. Mutat Res 91 107 110

7. LeClercJE

LiB

PayneWL

CebulaTA

1996 High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274 1208 1211

8. MaticI

RadmanM

TaddeiF

PicardB

DoitC

1997 Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277 1833 1834

9. OliverA

CantonR

CampoP

BaqueroF

BlazquezJ

2000 High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288 1251 1254

10. MandsbergLF

CiofuO

KirkbyN

ChristiansenLE

PoulsenHE

2009 Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother 53 2483 2491

11. GibsonTC

ScheppeML

CoxEC

1970 Fitness of an Escherichia coli mutator gene. Science 169 686 688

12. CoxEC

GibsonTC

1974 Selection for high mutation rates in chemostats. Genetics 77 169 184

13. ChaoL

CoxEC

1983 Competition between high and low mutating strains of Escherichia coli. Evolution 37 125 134

14. KimuraM

1967 The evolution of mutation rates. Genetics 73 1 18

15. LeighEGJr

1973 The evolution of mutation rates. Genetics 73: Suppl 73 71 18

16. AnderssonDI

HughesD

1996 Muller's ratchet decreases fitness of a DNA-based microbe. Proc Natl Acad Sci U S A 93 906 907

17. KibotaTT

LynchM

1996 Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381 694 696

18. FunchainP

YeungA

StewartJL

LinR

SlupskaMM

2000 The consequences of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. Genetics 154 959 970

19. TrobnerW

PiechockiR

1984 Selection against hypermutability in Escherichia coli during long term evolution. Mol Gen Genet 198 177 178

20. GroismanEA

CasadabanMJ

1987 Cloning of genes from members of the family Enterobacteriaceae with mini-Mu bacteriophage containing plasmid replicons. J Bacteriol 169 687 693

21. BrownMH

PaulsenIT

SkurrayRA

1999 The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 31 394 395

22. PutmanM

van VeenHW

KoningsWN

2000 Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64 672 693

23. HvorupRN

WinnenB

ChangAB

JiangY

ZhouXF

2003 The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur J Biochem 270 799 813

24. LongF

Rouquette-LoughlinC

ShaferWM

YuEW

2008 Functional cloning and characterization of the multidrug efflux pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli. Antimicrob Agents Chemother 52 3052 3060

25. MoritaY

KodamaK

ShiotaS

MineT

KataokaA

1998 NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42 1778 1782

26. KitagawaM

AraT

ArifuzzamanM

Ioka-NakamichiT

InamotoE

2005 Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12 291 299

27. FosterPL

2007 Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42 373 397

28. Al MamunAA

HumayunMZ

2009 Spontaneous mutagenesis is elevated in protease-defective cells. Mol Microbiol 71 629 639

29. LawtherRP

CalhounDH

AdamsCW

HauserCA

GrayJ

1981 Molecular basis of valine resistance in Escherichia coli K-12. Proc Natl Acad Sci U S A 78 922 925

30. CupplesCG

CabreraM

CruzC

MillerJH

1990 A set of lacZ mutations in Escherichia coli that allow rapid detection of specific frameshift mutations. Genetics 125 275 280

31. AlhamaJ

Ruiz-LagunaJ

Rodriguez-ArizaA

ToribioF

Lopez-BareaJ

1998 Formation of 8-oxoguanine in cellular DNA of Escherichia coli strains defective in different antioxidant defences. Mutagenesis 13 589 594

32. SandersLH

SudhakaranJ

SuttonMD

2009 The GO system prevents ROS-induced mutagenesis and killing in Pseudomonas aeruginosa. FEMS Microbiol Lett 294 89 96

33. ImlayJA

LinnS

1987 Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J Bacteriol 169 2967 2976

34. CooperVS

LenskiRE

2000 The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407 736 739

35. GiraudA

RadmanM

MaticI

TaddeiF

2001 The rise and fall of mutator bacteria. Curr Opin Microbiol 4 582 585

36. DenamurE

LecointreG

DarluP

TenaillonO

AcquavivaC

2000 Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 103 711 721

37. BrownEW

LeClercJE

LiB

PayneWL

CebulaTA

2001 Phylogenetic evidence for horizontal transfer of mutS alleles among naturally occurring Escherichia coli strains. J Bacteriol 183 1631 1644

38. FijalkowskaIJ

DunnRL

SchaaperRM

1993 Mutants of Escherichia coli with increased fidelity of DNA replication. Genetics 134 1023 1030

39. SchaaperRM

1993 The mutational specificity of two Escherichia coli dnaE antimutator alleles as determined from lacI mutation spectra. Genetics 134 1031 1038

40. SchaaperRM

1996 Suppressors of Escherichia coli mutT: antimutators for DNA replication errors. Mutat Res 350 17 23

41. Maisnier-PatinS

RothJR

FredrikssonA

NystromT

BergOG

2005 Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nat Genet 37 1376 1379

42. YangH

WolffE

KimM

DiepA

MillerJH

2004 Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach. Mol Microbiol 53 283 295

43. OtsukaM

MatsumotoT

MorimotoR

AriokaS

OmoteH

2005 A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A 102 17923 17928

44. MiyamaeS

UedaO

YoshimuraF

HwangJ

TanakaY

2001 A MATE family multidrug efflux transporter pumps out fluoroquinolones in Bacteroides thetaiotaomicron. Antimicrob Agents Chemother 45 3341 3346

45. SchaaperRM

DanforthBN

GlickmanBW

1985 Rapid repeated cloning of mutant lac repressor genes. Gene 39 181 189

46. BabaT

AraT

HasegawaM

TakaiY

OkumuraY

2006 Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2 2006 0008

47. BlaisdellJO

HatahetZ

WallaceSS

1999 A novel role for Escherichia coli endonuclease VIII in prevention of spontaneous G>T transversions. J Bacteriol 181 6396 6402

48. MillerJH

1992 A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli related bacteria New York Cold Spring Harbor Laboratory Press

49. ElezM

RadmanM

MaticI

2007 The frequency and structure of recombinant products is determined by the cellular level of MutL. Proc Natl Acad Sci U S A 104 8935 8940

50. SambrookJ

RussellDW

2001 Molecular cloning : a laboratory manual Cold Spring Harbor [New York] Laboratory Press

51. GroismanEA

CastilhoBA

CasadabanMJ

1984 In vivo DNA cloning and adjacent gene fusing with a mini-Mu-lac bacteriophage containing a plasmid replicon. Proc Natl Acad Sci U S A 81 1480 1483

52. CraneGJ

ThomasSM

JonesME

1996 A modified Luria-Delbruck fluctuation assay for estimating and comparing mutation rates. Mutat Res 354 171 182

53. CasadabanMJ

1976 Regulation of the regulatory gene for the arabinose pathway, araC. J Mol Biol 104 557 566

54. GroismanEA

CasadabanMJ

1987 In vivo DNA cloning with a mini-Mu replicon cosmid and a helper lambda phage. Gene 51 77 84

55. DatsenkoKA

WannerBL

2000 One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97 6640 6645

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#