#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling


Bone morphogenetic protein (BMP) pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP–like receptor signaling. SMA-10 acts genetically in a BMP–like (Sma/Mab) pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf) animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors.


Vyšlo v časopise: SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000963
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000963

Souhrn

Bone morphogenetic protein (BMP) pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP–like receptor signaling. SMA-10 acts genetically in a BMP–like (Sma/Mab) pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf) animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors.


Zdroje

1. DennlerS

GoumansMJ

ten DijkeP

2002 Transforming growth factor β signal transduction. J Leukoc Biol 71 731 740

2. ShiY

MassaguéJ

2003 Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113 685 700

3. MassaguéJ

BlainSW

LoRS

2000 TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103 295 309

4. GordonKJ

BlobeGC

2008 Role of transforming growth factor-β superfamily signaling pathways in human disease. Biochim Biophys Acta 1782 197 228

5. MassagueJ

2008 TGFβ in Cancer. Cell 134 215 230

6. GumiennyTL

PadgettRW

2002 The other side of TGF-β superfamily signal regulation: thinking outside the cell. Trends Endocrinol Metab 13 295 299

7. UmulisD

O'ConnorMB

BlairSS

2009 The extracellular regulation of bone morphogenetic protein signaling. Development 136 3715 3728

8. ItohS

ten DijkeP

2007 Negative regulation of TGF-β receptor/Smad signal transduction. Cur Opin Cell Biol 19 176 184

9. OnichtchoukD

ChenYG

DoschR

GawantkaV

DeliusH

1999 Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature 401 480 485

10. CheifetzS

WeatherbeeJA

TsangML

AndersonJK

MoleJE

1987 The transforming growth factor-β system, a complex pattern of cross-reactive ligands and receptors. Cell 48 409 415

11. MassaguéJ

LikeB

1985 Cellular receptors for type β transforming growth factor. Ligand binding and affinity labeling in human and rodent cell lines. J Biol Chem 260 2636 2645

12. CheifetzS

BellonT

CalesC

VeraS

BernabeuC

1992 Endoglin is a component of the transforming growth factor-β receptor system in human endothelial cells. J Biol Chem 267 19027 19030

13. BarbaraNP

WranaJL

LetarteM

1999 Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-β superfamily. J Biol Chem 274 584 594

14. KirkbrideKC

TownsendTA

BruinsmaMW

BarnettJV

BlobeGC

2008 Bone morphogenetic proteins signal through the transforming growth factor-β type III receptor. J Biol Chem 283 7628 7637

15. PattersonGI

PadgettRW

2000 TGFβ-related pathways. Roles in Caenorhabditis elegans development. Trends Genet 16 27 33

16. Savage-DunnC

2005 TGF-β signaling (September 9, 2005) In: Community TCeR, editor. WormBook. 10.1895/wormbook.1.22.1 ed: http://wormbook.org

17. EstevezM

AttisanoL

WranaJL

AlbertPS

MassaguéJ

1993 The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature 365 644 649

18. KrishnaS

MaduziaLL

PadgettRW

1999 Specificity of TGFβ signaling is conferred by distinct type I receptors and their associated SMAD proteins in Caenorhabditis elegans. Development 126 251 260

19. SavageC

DasP

FinelliAL

TownsendSR

SunCY

1996 Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor-β pathway components. Proc Natl Acad Sci U S A 93 790 794

20. JiYJ

NamS

JinYH

ChaEJ

LeeKS

2004 RNT-1, the C. elegans homologue of mammalian RUNX transcription factors, regulates body size and male tail development. Dev Biol 274 402 412

21. LiangJ

LintsR

FoehrML

TokarzR

YuL

2003 The Caenorhabditis elegans schnurri homolog sma-9 mediates stage- and cell type-specific responses to DBL-1 BMP-related signaling. Development 130 6453 6464

22. MoritaK

ChowKL

UenoN

1999 Regulation of body length and male tail ray pattern formation of Caenorhabditis elegans by a member of TGF-β family. Development 126 1337 1347

23. SuzukiY

YandellMD

RoyPJ

KrishnaS

Savage-DunnC

1999 A BMP homolog acts as a dose-dependent regulator of body size and male tail patterning in Caenorhabditis elegans. Development 126 241 250

24. GumiennyTL

MacNeilLT

WangH

de BonoM

WranaJL

2007 Glypican LON-2 is a conserved negative regulator of BMP-like signaling in Caenorhabditis elegans. Curr Biol 17 159 164

25. Savage-DunnC

MaduziaLL

ZimmermanCM

RobertsAF

CohenS

2003 Genetic screen for small body size mutants in C. elegans reveals many TGFβ pathway components. Genesis 35 239 247

26. BrennerS

1974 The genetics of Caenorhabditis elegans. Genetics 77 71 94

27. GuoD

HolmlundC

HenrikssonR

HedmanH

2004 The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea. Genomics 84 157 165

28. GhiglioneC

CarrawayKL3rd

AmundadottirLT

BoswellRE

PerrimonN

1999 The transmembrane molecule Kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell 96 847 856

29. EvansTA

HaridasH

DuffyJB

2009 Kekkon5 is an extracellular regulator of BMP signaling. Dev Biol 326 36 46

30. MaduziaLL

GumiennyTL

ZimmermanCM

WangH

ShetgiriP

2002 lon-1 regulates Caenorhabditis elegans body size downstream of the dbl-1 TGFβ signaling pathway. Dev Biol 246 418 428

31. MoritaK

FlemmingAJ

SugiharaY

MochiiM

SuzukiY

2002 A Caenorhabditis elegans TGF-β, DBL-1, controls the expression of LON-1, a PR-related protein, that regulates polyploidization and body length. EMBO J 21 1063 1073

32. WangJ

TokarzR

Savage-DunnC

2002 The expression of TGFβ signal transducers in the hypodermis regulates body size in C. elegans. Development 129 4989 4998

33. YoshidaS

MoritaK

MochiiM

UenoN

2001 Hypodermal expression of Caenorhabditis elegans TGF-β type I receptor SMA-6 is essential for the growth and maintenance of body length. Dev Biol 240 32 45

34. McKaySJ

JohnsenR

KhattraJ

AsanoJ

BaillieDL

2003 Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb Symp Quant Biol 68 159 169

35. PattersonGI

KoweekA

WongA

LiuY

RuvkunG

1997 The DAF-3 Smad protein antagonizes TGF-β-related receptor signaling in the Caenorhabditis elegans dauer pathway. Genes Dev 11 2679 2690

36. Reece-HoyesJS

ShinglesJ

DupuyD

GroveCA

WalhoutAJ

2007 Insight into transcription factor gene duplication from Caenorhabditis elegans promoterome-driven expression patterns. BMC Genomics 8 27

37. MalloGV

KurzCL

CouillaultC

PujolN

GranjeaudS

2002 Inducible antibacterial defense system in C. elegans. Curr Biol 12 1209 1214

38. ZugastiO

EwbankJJ

2009 Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-β signaling pathway in Caenorhabditis elegans epidermis. Nat Immunol 10 249 256

39. BenchabaneH

WranaJL

2003 GATA- and Smad1-dependent enhancers in the Smad7 gene differentially interpret bone morphogenetic protein concentrations. Mol Cell Biol 23 6646 6661

40. GurG

RubinC

KatzM

AmitI

CitriA

2004 LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J 23 3270 3281

41. ShattuckDL

MillerJK

LaederichM

FunesM

PetersenH

2007 LRIG1 is a novel negative regulator of the Met receptor and opposes Met and Her2 synergy. Mol Cell Biol 27 1934 1946

42. LintsR

JiaL

KimK

LiC

EmmonsSW

2004 Axial patterning of C. elegans male sensilla identities by selector genes. Dev Biol 269 137 151

43. SuzukiY

MiuraH

TanemuraA

KobayashiK

KondohG

2002 Targeted disruption of LIG-1 gene results in psoriasiform epidermal hyperplasia. FEBS Lett 521 67 71

44. BarclayAN

2003 Membrane proteins with immunoglobulin-like domains-a master superfamily of interaction molecules. Semin Immunol 15 215 223

45. KobeB

KajavaAV

2001 The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11 725 732

46. HedmanH

HenrikssonR

2007 LRIG inhibitors of growth factor signalling—double-edged swords in human cancer? Eur J Cancer 43 676 682

47. Di GuglielmoGM

Le RoyC

GoodfellowAF

WranaJL

2003 Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat Cell Biol 5 410 421

48. MoghalN

SternbergPW

2003 The epidermal growth factor system in Caenorhabditis elegans. Exp Cell Res 284 150 159

49. RubinGM

YandellMD

WortmanJR

Gabor MiklosGL

NelsonCR

2000 Comparative genomics of the eukaryotes. Science 287 2204 2215

50. GrantB

HirshD

1999 Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10 4311 4326

51. d'AzzoA

BongiovanniA

NastasiT

2005 E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. Traffic 6 429 441

52. Le RoyC

WranaJL

2005 Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6 112 126

53. YuH

PrétôtRF

BürglinTR

SternbergPW

2003 Distinct roles of transcription factors EGL-46 and DAF-19 in specifying the functionality of a polycystin-expressing sensory neuron necessary for C. elegans male vulva location behavior. Development 130 5217 5227

54. MelloC

FireA

1995 DNA transformation. Methods Cell Biol 48 451 482

55. WicksSR

YehRT

GishWR

WaterstonRH

PlasterkRH

2001 Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28 160 164

56. SambrookJ

RussellDW

1989 2344 Molecular Cloning: a Laboratory Manual: Cold Spring Harbor Press.

57. Jantsch-PlungerV

FireA

1994 Combinatorial structure of a body muscle-specific transcriptional enhancer in Caenorhabditis elegans. J Biol Chem 269 27021 27028

58. AttisanoL

CárcamoJ

VenturaF

WeisFM

MassaguéJ

1993 Identification of human activin and TGFβ type I receptors that form heteromeric kinase complexes with type II receptors. Cell 75 671 680

59. AttisanoL

WranaJL

MontalvoE

MassaguéJ

1996 Activation of signalling by the activin receptor complex. Mol Cell Biol 16 1066 1073

60. HoodlessPA

HaerryT

AbdollahS

StapletonM

O'ConnorMB

1996 MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85 489 500

61. Macías-SilvaM

HoodlessPA

TangSJ

BuchwaldM

WranaJL

1998 Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J Biol Chem 273 25628 25636

62. LetunicI

CopleyRR

PilsB

PinkertS

SchultzJ

2006 SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34 D257 D260

63. MacLarenCM

EvansTA

AlvaradoD

DuffyJB

2004 Comparative analysis of the Kekkon molecules, related members of the LIG superfamily. Dev Genes Evol 214 360 366

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#