SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling
Bone morphogenetic protein (BMP) pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP–like receptor signaling. SMA-10 acts genetically in a BMP–like (Sma/Mab) pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf) animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors.
Vyšlo v časopise:
SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000963
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000963
Souhrn
Bone morphogenetic protein (BMP) pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP–like receptor signaling. SMA-10 acts genetically in a BMP–like (Sma/Mab) pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf) animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors.
Zdroje
1. DennlerS
GoumansMJ
ten DijkeP
2002 Transforming growth factor β signal transduction. J Leukoc Biol 71 731 740
2. ShiY
MassaguéJ
2003 Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113 685 700
3. MassaguéJ
BlainSW
LoRS
2000 TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103 295 309
4. GordonKJ
BlobeGC
2008 Role of transforming growth factor-β superfamily signaling pathways in human disease. Biochim Biophys Acta 1782 197 228
5. MassagueJ
2008 TGFβ in Cancer. Cell 134 215 230
6. GumiennyTL
PadgettRW
2002 The other side of TGF-β superfamily signal regulation: thinking outside the cell. Trends Endocrinol Metab 13 295 299
7. UmulisD
O'ConnorMB
BlairSS
2009 The extracellular regulation of bone morphogenetic protein signaling. Development 136 3715 3728
8. ItohS
ten DijkeP
2007 Negative regulation of TGF-β receptor/Smad signal transduction. Cur Opin Cell Biol 19 176 184
9. OnichtchoukD
ChenYG
DoschR
GawantkaV
DeliusH
1999 Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature 401 480 485
10. CheifetzS
WeatherbeeJA
TsangML
AndersonJK
MoleJE
1987 The transforming growth factor-β system, a complex pattern of cross-reactive ligands and receptors. Cell 48 409 415
11. MassaguéJ
LikeB
1985 Cellular receptors for type β transforming growth factor. Ligand binding and affinity labeling in human and rodent cell lines. J Biol Chem 260 2636 2645
12. CheifetzS
BellonT
CalesC
VeraS
BernabeuC
1992 Endoglin is a component of the transforming growth factor-β receptor system in human endothelial cells. J Biol Chem 267 19027 19030
13. BarbaraNP
WranaJL
LetarteM
1999 Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-β superfamily. J Biol Chem 274 584 594
14. KirkbrideKC
TownsendTA
BruinsmaMW
BarnettJV
BlobeGC
2008 Bone morphogenetic proteins signal through the transforming growth factor-β type III receptor. J Biol Chem 283 7628 7637
15. PattersonGI
PadgettRW
2000 TGFβ-related pathways. Roles in Caenorhabditis elegans development. Trends Genet 16 27 33
16. Savage-DunnC
2005 TGF-β signaling (September 9, 2005) In: Community TCeR, editor. WormBook. 10.1895/wormbook.1.22.1 ed: http://wormbook.org
17. EstevezM
AttisanoL
WranaJL
AlbertPS
MassaguéJ
1993 The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature 365 644 649
18. KrishnaS
MaduziaLL
PadgettRW
1999 Specificity of TGFβ signaling is conferred by distinct type I receptors and their associated SMAD proteins in Caenorhabditis elegans. Development 126 251 260
19. SavageC
DasP
FinelliAL
TownsendSR
SunCY
1996 Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor-β pathway components. Proc Natl Acad Sci U S A 93 790 794
20. JiYJ
NamS
JinYH
ChaEJ
LeeKS
2004 RNT-1, the C. elegans homologue of mammalian RUNX transcription factors, regulates body size and male tail development. Dev Biol 274 402 412
21. LiangJ
LintsR
FoehrML
TokarzR
YuL
2003 The Caenorhabditis elegans schnurri homolog sma-9 mediates stage- and cell type-specific responses to DBL-1 BMP-related signaling. Development 130 6453 6464
22. MoritaK
ChowKL
UenoN
1999 Regulation of body length and male tail ray pattern formation of Caenorhabditis elegans by a member of TGF-β family. Development 126 1337 1347
23. SuzukiY
YandellMD
RoyPJ
KrishnaS
Savage-DunnC
1999 A BMP homolog acts as a dose-dependent regulator of body size and male tail patterning in Caenorhabditis elegans. Development 126 241 250
24. GumiennyTL
MacNeilLT
WangH
de BonoM
WranaJL
2007 Glypican LON-2 is a conserved negative regulator of BMP-like signaling in Caenorhabditis elegans. Curr Biol 17 159 164
25. Savage-DunnC
MaduziaLL
ZimmermanCM
RobertsAF
CohenS
2003 Genetic screen for small body size mutants in C. elegans reveals many TGFβ pathway components. Genesis 35 239 247
26. BrennerS
1974 The genetics of Caenorhabditis elegans. Genetics 77 71 94
27. GuoD
HolmlundC
HenrikssonR
HedmanH
2004 The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea. Genomics 84 157 165
28. GhiglioneC
CarrawayKL3rd
AmundadottirLT
BoswellRE
PerrimonN
1999 The transmembrane molecule Kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell 96 847 856
29. EvansTA
HaridasH
DuffyJB
2009 Kekkon5 is an extracellular regulator of BMP signaling. Dev Biol 326 36 46
30. MaduziaLL
GumiennyTL
ZimmermanCM
WangH
ShetgiriP
2002 lon-1 regulates Caenorhabditis elegans body size downstream of the dbl-1 TGFβ signaling pathway. Dev Biol 246 418 428
31. MoritaK
FlemmingAJ
SugiharaY
MochiiM
SuzukiY
2002 A Caenorhabditis elegans TGF-β, DBL-1, controls the expression of LON-1, a PR-related protein, that regulates polyploidization and body length. EMBO J 21 1063 1073
32. WangJ
TokarzR
Savage-DunnC
2002 The expression of TGFβ signal transducers in the hypodermis regulates body size in C. elegans. Development 129 4989 4998
33. YoshidaS
MoritaK
MochiiM
UenoN
2001 Hypodermal expression of Caenorhabditis elegans TGF-β type I receptor SMA-6 is essential for the growth and maintenance of body length. Dev Biol 240 32 45
34. McKaySJ
JohnsenR
KhattraJ
AsanoJ
BaillieDL
2003 Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb Symp Quant Biol 68 159 169
35. PattersonGI
KoweekA
WongA
LiuY
RuvkunG
1997 The DAF-3 Smad protein antagonizes TGF-β-related receptor signaling in the Caenorhabditis elegans dauer pathway. Genes Dev 11 2679 2690
36. Reece-HoyesJS
ShinglesJ
DupuyD
GroveCA
WalhoutAJ
2007 Insight into transcription factor gene duplication from Caenorhabditis elegans promoterome-driven expression patterns. BMC Genomics 8 27
37. MalloGV
KurzCL
CouillaultC
PujolN
GranjeaudS
2002 Inducible antibacterial defense system in C. elegans. Curr Biol 12 1209 1214
38. ZugastiO
EwbankJJ
2009 Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-β signaling pathway in Caenorhabditis elegans epidermis. Nat Immunol 10 249 256
39. BenchabaneH
WranaJL
2003 GATA- and Smad1-dependent enhancers in the Smad7 gene differentially interpret bone morphogenetic protein concentrations. Mol Cell Biol 23 6646 6661
40. GurG
RubinC
KatzM
AmitI
CitriA
2004 LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J 23 3270 3281
41. ShattuckDL
MillerJK
LaederichM
FunesM
PetersenH
2007 LRIG1 is a novel negative regulator of the Met receptor and opposes Met and Her2 synergy. Mol Cell Biol 27 1934 1946
42. LintsR
JiaL
KimK
LiC
EmmonsSW
2004 Axial patterning of C. elegans male sensilla identities by selector genes. Dev Biol 269 137 151
43. SuzukiY
MiuraH
TanemuraA
KobayashiK
KondohG
2002 Targeted disruption of LIG-1 gene results in psoriasiform epidermal hyperplasia. FEBS Lett 521 67 71
44. BarclayAN
2003 Membrane proteins with immunoglobulin-like domains-a master superfamily of interaction molecules. Semin Immunol 15 215 223
45. KobeB
KajavaAV
2001 The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11 725 732
46. HedmanH
HenrikssonR
2007 LRIG inhibitors of growth factor signalling—double-edged swords in human cancer? Eur J Cancer 43 676 682
47. Di GuglielmoGM
Le RoyC
GoodfellowAF
WranaJL
2003 Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat Cell Biol 5 410 421
48. MoghalN
SternbergPW
2003 The epidermal growth factor system in Caenorhabditis elegans. Exp Cell Res 284 150 159
49. RubinGM
YandellMD
WortmanJR
Gabor MiklosGL
NelsonCR
2000 Comparative genomics of the eukaryotes. Science 287 2204 2215
50. GrantB
HirshD
1999 Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10 4311 4326
51. d'AzzoA
BongiovanniA
NastasiT
2005 E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. Traffic 6 429 441
52. Le RoyC
WranaJL
2005 Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6 112 126
53. YuH
PrétôtRF
BürglinTR
SternbergPW
2003 Distinct roles of transcription factors EGL-46 and DAF-19 in specifying the functionality of a polycystin-expressing sensory neuron necessary for C. elegans male vulva location behavior. Development 130 5217 5227
54. MelloC
FireA
1995 DNA transformation. Methods Cell Biol 48 451 482
55. WicksSR
YehRT
GishWR
WaterstonRH
PlasterkRH
2001 Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28 160 164
56. SambrookJ
RussellDW
1989 2344 Molecular Cloning: a Laboratory Manual: Cold Spring Harbor Press.
57. Jantsch-PlungerV
FireA
1994 Combinatorial structure of a body muscle-specific transcriptional enhancer in Caenorhabditis elegans. J Biol Chem 269 27021 27028
58. AttisanoL
CárcamoJ
VenturaF
WeisFM
MassaguéJ
1993 Identification of human activin and TGFβ type I receptors that form heteromeric kinase complexes with type II receptors. Cell 75 671 680
59. AttisanoL
WranaJL
MontalvoE
MassaguéJ
1996 Activation of signalling by the activin receptor complex. Mol Cell Biol 16 1066 1073
60. HoodlessPA
HaerryT
AbdollahS
StapletonM
O'ConnorMB
1996 MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85 489 500
61. Macías-SilvaM
HoodlessPA
TangSJ
BuchwaldM
WranaJL
1998 Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J Biol Chem 273 25628 25636
62. LetunicI
CopleyRR
PilsB
PinkertS
SchultzJ
2006 SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34 D257 D260
63. MacLarenCM
EvansTA
AlvaradoD
DuffyJB
2004 Comparative analysis of the Kekkon molecules, related members of the LIG superfamily. Dev Genes Evol 214 360 366
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 5
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Common Genetic Variants near the Brittle Cornea Syndrome Locus Influence the Blinding Disease Risk Factor Central Corneal Thickness
- All About Mitochondrial Eve: An Interview with Rebecca Cann
- The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution
- SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling