#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Transcription Factors Mat2 and Znf2 Operate Cellular Circuits Orchestrating Opposite- and Same-Sex Mating in


Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from a unicellular yeast to multicellular hyphae during opposite sex (mating) and unisexual reproduction (same-sex mating). Opposite- and same-sex mating are induced by similar environmental conditions and involve many shared components, including the conserved pheromone sensing Cpk1 MAPK signal transduction cascade that governs the dimorphic switch in C. neoformans. However, the homeodomain cell identity proteins Sxi1α/Sxi2a encoded by the mating type locus that are essential for completion of sexual reproduction following cell–cell fusion during opposite-sex mating are dispensable for same-sex mating. Therefore, identification of downstream targets of the Cpk1 MAPK pathway holds the key to understanding molecular mechanisms governing the two distinct developmental fates. Thus far, homology-based approaches failed to identify downstream transcription factors which may therefore be species-specific. Here, we applied insertional mutagenesis via Agrobacterium-mediated transformation and transcription analysis using whole genome microarrays to identify factors involved in C. neoformans differentiation. Two transcription factors, Mat2 and Znf2, were identified as key regulators of hyphal growth during same- and opposite-sex mating. Mat2 is an HMG domain factor, and Znf2 is a zinc finger protein; neither is encoded by the mating type locus. Genetic, phenotypic, and transcriptional analyses of Mat2 and Znf2 provide evidence that Mat2 is a downstream transcription factor of the Cpk1 MAPK pathway whereas Znf2 functions as a more terminal hyphal morphogenesis determinant. Although the components of the MAPK pathway including Mat2 are not required for virulence in animal models, Znf2, as a hyphal morphology determinant, is a negative regulator of virulence. Further characterization of these elements and their target circuits will reveal genes controlling biological processes central to fungal development and virulence.


Vyšlo v časopise: Transcription Factors Mat2 and Znf2 Operate Cellular Circuits Orchestrating Opposite- and Same-Sex Mating in. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000953
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000953

Souhrn

Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from a unicellular yeast to multicellular hyphae during opposite sex (mating) and unisexual reproduction (same-sex mating). Opposite- and same-sex mating are induced by similar environmental conditions and involve many shared components, including the conserved pheromone sensing Cpk1 MAPK signal transduction cascade that governs the dimorphic switch in C. neoformans. However, the homeodomain cell identity proteins Sxi1α/Sxi2a encoded by the mating type locus that are essential for completion of sexual reproduction following cell–cell fusion during opposite-sex mating are dispensable for same-sex mating. Therefore, identification of downstream targets of the Cpk1 MAPK pathway holds the key to understanding molecular mechanisms governing the two distinct developmental fates. Thus far, homology-based approaches failed to identify downstream transcription factors which may therefore be species-specific. Here, we applied insertional mutagenesis via Agrobacterium-mediated transformation and transcription analysis using whole genome microarrays to identify factors involved in C. neoformans differentiation. Two transcription factors, Mat2 and Znf2, were identified as key regulators of hyphal growth during same- and opposite-sex mating. Mat2 is an HMG domain factor, and Znf2 is a zinc finger protein; neither is encoded by the mating type locus. Genetic, phenotypic, and transcriptional analyses of Mat2 and Znf2 provide evidence that Mat2 is a downstream transcription factor of the Cpk1 MAPK pathway whereas Znf2 functions as a more terminal hyphal morphogenesis determinant. Although the components of the MAPK pathway including Mat2 are not required for virulence in animal models, Znf2, as a hyphal morphology determinant, is a negative regulator of virulence. Further characterization of these elements and their target circuits will reveal genes controlling biological processes central to fungal development and virulence.


Zdroje

1. BanuettF

1998 Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev 62 249 274

2. DohlmanHG

SlessarevaJE

2006 Pheromone signaling pathways in yeast. Sci STKE 2006 cm6

3. SchwartzMA

MadhaniHD

2004 Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet 38 725 748

4. DavidsonRC

NicholsCB

CoxGM

PerfectJR

HeitmanJ

2003 A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans. Mol Microbiol 49 469 485

5. BardwellL

CookJG

InouyeCJ

ThornerJ

1994 Signal propagation and regulation in the mating pheromone response pathway of the yeast Saccharomyces cerevisiae. Dev Biol 166 363 379

6. LinX

2009 Cryptococcus neoformans: morphogenesis, infection, and evolution. Infection, Genetics and Evolution 9 401 416

7. AndrianopoulosA

2002 Control of morphogenesis in the human fungal pathogen Penicillium marneffei. Int J Med Microbiol 292 331 347

8. Kwon-ChungKJ

BennettJE

1992 Medical mycology Philadelphia Lea & Febiger

9. GreerDL

1978 Basidiomycetes as agents of human infections: a review. Mycopathologia 65 133 139

10. BraunBR

JohnsonAD

1997 Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277 105 109

11. CsankC

SchroppelK

LebererE

HarcusD

MohamedO

1998 Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66 2713 2721

12. LoHJ

KohlerJR

DiDomenicoB

LoebenbergD

CacciapuotiA

1997 Nonfilamentous C. albicans mutants are avirulent. Cell 90 939 949

13. StoldtVR

SonnebornA

LeukerCE

ErnstJF

1997 Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16 1982 1991

14. MarescaB

KobayashiGS

2000 Dimorphism in Histoplasma capsulatum and Blastomyces dermatitidis. Contrib Microbiol 5 201 216

15. KleinBS

TebbetsB

2007 Dimorphism and virulence in fungi. Curr Opin Microbiol 10 314 319

16. LimaRF

Santos BritoMM

SchafferGM

LimaOC

Borba CdeM

2004 Evaluation of the in vitro and in vivo dimorphism of Sporothrix schenckii, Blastomyces dermatitidis, and Paracoccidioides brasiliensis isolates after preservation in mineral oil. Can J Microbiol 50 445 449

17. DhillonNK

SharmaS

KhullerGK

2003 Signaling through protein kinases and transcriptional regulators in Candida albicans. Crit Rev Microbiol 29 259 275

18. LiuH

2002 Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen. Int J Med Microbiol 292 299 311

19. LopezCE

2006 Dimorphism and pathogenesis of Histoplasma capsulatum. Rev Argent Microbiol 38 235 242

20. CasadevallA

PerfectJR

1998 Cryptococcus neoformans Washington, D.C. ASM Press

21. MitchellTG

PerfectJR

1995 Cryptococcosis in the era of AIDS–100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 8 515 548

22. Pukkila-WorleyR

MylonakisE

2008 Epidemiology and management of cryptococcal meningitis: developments and challenges. Expert Opin Pharmacother 9 1 10

23. ChenJ

VarmaA

DiazMR

LitvintsevaAP

WollenbergKK

2008 Cryptococcus neoformans strains and infection in apparently immunocompetent patients, China. Emerg Infect Dis 14 755 762

24. ParkBJ

Refocusing on a re-emergent disease: The current global burden of cryptococcal meningitis among persons living with HIV/AIDS; 2008; Washington, DC. Abstract M-1848

25. Kwon-ChungKJ

1975 A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67 1197 1200

26. Kwon-ChungKJ

1976 A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. Mycologia 68 943 946

27. McClellandCM

ChangYC

VarmaA

Kwon-ChungKJ

2004 Uniqueness of the mating system in Cryptococcus neoformans. Trends Microbiol 12 208 212

28. AlspaughJA

DavidsonRC

HeitmanJ

2000 Morphogenesis of Cryptococcus neoformans. Contrib Microbiol 5 217 238

29. IwasaM

TanabeS

KamadaT

1998 The two nuclei in the dikaryon of the homobasidiomycete Coprinus cinereus change position after each conjugate division. Fungal Genet Biol 23 110 116

30. LinX

HullCM

HeitmanJ

2005 Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434 1017 1021

31. NielsenK

CoxGM

WangP

ToffalettiDL

PerfectJR

2003 Sexual cycle of Cryptococcus neoformans var. grubii and virulence of congenic a and a isolates. Infect Immun 71 4831 4841

32. FraserJA

SubaranRL

NicholsCB

HeitmanJ

2003 Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii: implications for an outbreak on Vancouver Island, Canada. Eukaryot Cell 2 1036 1045

33. ErkeKH

1976 Light microscopy of basidia, basidiospores, and nuclei in spores and hyphae of Filobasidiella neoformans (Cryptococcus neoformans). J Bacteriol 128 445 455

34. WickesBL

MayorgaME

EdmanU

EdmanJC

1996 Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the alpha-mating type. Proc Natl Acad Sci USA 93 7327 7331

35. LinX

HuangJC

MitchellTG

HeitmanJ

2006 Virulence attributes and hyphal growth of C. neoformans are quantitative traits and the MATa allele enhances filamentation. PLoS Genet 2 e187 doi:10.1371/journal.pgen.0020187

36. BuiT

LinX

MalikR

HeitmanJ

CarterD

2008 Isolates of Cryptococcus neoformans from infected animals reveal genetic exchange in unisexual, a mating type populations. Eukaryot Cell 7 1771 1780

37. ToddRL

HerrmannWW

1936 The life cycle of the organism causing yeast meningitis. J Bacteriol 32 89 103

38. LinX

LitvintsevaA

NielsenK

PatelS

KapadiaZ

2007 aADa hybrids of Cryptococcus neoformans: Evidence of same sex mating in nature and hybrid fitness. PLoS Genet 3 e186 doi:10.1371/journal.pgen.0030186

39. HullCM

BoilyMJ

HeitmanJ

2005 Sex-specific homeodomain proteins Sxi1a and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot Cell 4 526 535

40. HullCM

DavidsonRC

HeitmanJ

2002 Cell identity and sexual development in Cryptococcus neoformans are controlled by the mating-type-specific homeodomain protein Sxi1a. Genes Dev 16 3046 3060

41. ButlerG

RasmussenMD

LinMF

SantosMA

SakthikumarS

2009 Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459 657 662

42. AlbyK

SchaeferD

BennettRJ

2009 Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature 460 890 893

43. ReedyJL

FloydAM

HeitmanJ

2009 Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr Biol 19 891 899

44. HuangG

SrikanthaT

SahniN

YiS

SollDR

2009 CO2 regulates white-to-opaque switching in Candida albicans. Current Biology 19 1 5

45. HerskowitzI

1995 MAP kinase pathways in yeast: for mating and more. Cell 80 187 197

46. ClarkeDL

WoodleeGL

McClellandCM

SeymourTS

WickesBL

2001 The Cryptococcus neoformans STE11a gene is similar to other fungal mitogen-activated protein kinase kinase kinase (MAPKKK) genes but is mating type specific. Mol Microbiol 40 200 213

47. WangP

NicholsCB

LengelerKB

CardenasME

CoxGM

2002 Mating-type-specific and nonspecific PAK kinases play shared and divergent roles in Cryptococcus neoformans. Eukaryot Cell 1 257 272

48. NicholsCB

FraserJA

HeitmanJ

2004 PAK kinases Ste20 and Pak1 govern cell polarity at different stages of mating in Cryptococcus neoformans. Mol Biol Cell 15 4476 4489

49. GavriasV

AndrianopoulosA

GimenoCJ

TimberlakeWE

1996 Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol 19 1255 1263

50. MadhaniHD

FinkGR

1997 Combinatorial control required for the specificity of yeast MAPK signaling. Science 275 1314 1317

51. WickesBL

EdmanU

EdmanJC

1997 The Cryptococcus neoformans STE12a gene: a putative Saccharomyces cerevisiae STE12 homologue that is mating type specific. Mol Microbiol 26 951 960

52. YueC

CavalloLM

AlspaughJA

WangP

CoxGM

1999 The STE12a homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans. Genetics 153 1601 1615

53. ChangYC

WickesBL

MillerGF

PenoyerLA

Kwon-ChungKJ

2000 Cryptococcus neoformans STE12a regulates virulence but is not essential for mating. J Exp Med 191 871 882

54. ChangYC

PenoyerLA

Kwon-ChungKJ

2001 The second STE12 homologue of Cryptococcus neoformans is MATa-specific and plays an important role in virulence. Proc Natl Acad Sci U S A 98 3258 3263

55. BornemanAR

HynesMJ

AndrianopoulosA

2001 An STE12 homolog from the asexual, dimorphic fungus Penicillium marneffei complements the defect in sexual development of an Aspergillus nidulans steA mutant. Genetics 157 1003 1014

56. SugimotoA

IinoY

MaedaT

WatanabeY

YamamotoM

1991 Schizosaccharomyces pombe ste11+ encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev 5 1990 1999

57. HartmannHA

KahmannR

BolkerM

1996 The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J 15 1632 1641

58. HartmannHA

KrugerJ

LottspeichF

KahmannR

1999 Environmental signals controlling sexual development of the corn smut fungus Ustilago maydis through the transcriptional regulator Prf1. Plant Cell 11 1293 1306

59. HullCM

HeitmanJ

2002 Genetics of Cryptococcus neoformans. Annu Rev Genet 36 557 615

60. TscharkeRL

LazeraM

ChangYC

WickesBL

Kwon-ChungKJ

2003 Haploid fruiting in Cryptococcus neoformans is not mating type alpha-specific. Fungal Genet Biol 39 230 237

61. LengelerKB

FoxDS

FraserJA

AllenA

ForresterK

2002 Mating-type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryot Cell 1 704 718

62. KarosM

ChangYC

McClellandCM

ClarkeDL

FuJ

2000 Mapping of the Cryptococcus neoformans MATa locus: presence of mating type-specific mitogen-activated protein kinase cascade homologs. J Bacteriol 182 6222 6227

63. MitchellAP

1998 Dimorphism and virulence in Candida albicans. Curr Opin Microbiol 1 687 692

64. Sanchez-MartinezC

Perez-MartinJ

2001 Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis–similar inputs, different outputs. Curr Opin Microbiol 4 214 221

65. LiuH

2001 Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4 728 735

66. MullerP

AichingerC

FeldbruggeM

KahmannR

1999 The MAP kinase kpp2 regulates mating and pathogenic development in Ustilago maydis. Mol Microbiol 34 1007 1017

67. Mendoza-MendozaA

EskovaA

WeiseC

CzajkowskiR

KahmannR

2009 Hap2 regulates the pheromone response transcription factor prf1 in Ustilago maydis. Mol Microbiol Epub ahead of print

68. IdnurmA

ReedyJL

NussbaumJC

HeitmanJ

2004 Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryotic Cell 3 420 429

69. IdnurmA

HeitmanJ

2005 Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3 e95 doi:10.1371/journal.pbio.0030095

70. WaltonFJ

IdnurmA

HeitmanJ

2005 Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 57 1381 1396

71. LoftusBJ

FungE

RoncagliaP

RowleyD

AmedeoP

2005 The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307 1321 1324

72. CasseltonLA

2002 Mate recognition in fungi. Heredity 88 142 147

73. CoppinE

DebuchyR

ArnaiseS

PicardM

1997 Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev 61 411 428

74. LinX

HeitmanJ

2007 Mechanisms of homothallism in fungi.

HeitmanJ

KronstadJ

TaylorJ

CasseltonLA

Sex in fungi: molecular determination and evolutionary implications: American Society of Microbiology

75. HeitmanJ

KronstadJ

TaylorJ

CasseltonLA

2007 Sex in fungi : molecular determination and evolutionary implications Washington, D.C. ASM Press xxv 542

76. KrausPR

BoilyMJ

GilesSS

StajichJE

AllenA

2004 Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. Eukaryot Cell 3 1249 1260

77. XueC

TadaY

DongX

HeitmanJ

2007 The human fungal pathogen Cryptococcus can complete its sexual cycle during a pathogenic association with plants. Cell Host & Microbe 1 263 273

78. ShenWC

DavidsonRC

CoxGM

HeitmanJ

2002 Pheromones stimulate mating and differentiation via paracrine and autocrine signaling in Cryptococcus neoformans. Eukaryot Cell 1 366 377

79. SiaRA

LengelerKB

HeitmanJ

2000 Diploid strains of the pathogenic basidiomycete Cryptococcus neoformans are thermally dimorphic. Fungal Genet Biol 29 153 163

80. BarchiesiF

CogliatiM

EspostoMC

SpreghiniE

SchimizziAM

2005 Comparative analysis of pathogenicity of Cryptococcus neoformans serotypes A, D and AD in murine cryptococcosis. J Infect 51 10 16

81. LinX

NielsenK

PatelS

HeitmanJ

2008 Impact of mating type, serotype, and ploidy on the virulence of Cryptococcus neoformans. Infect Immun 76 2923 2938

82. LinX

HeitmanJ

2006 The biology of the Cryptococcus neoformans species complex. Annu Rev Microbiol 60 69 105

83. IdnurmA

WaltonFJ

FloydA

HeitmanJ

2008 Identification of the sex genes in an early diverged fungus. Nature 451 193 196

84. LiuH

KohlerJ

FinkGR

1994 Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266 1723 1726

85. KohlerJR

FinkGR

1996 Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A 93 13223 13228

86. SinghP

GhoshS

DattaA

1997 A novel MAP-kinase kinase from Candida albicans. Gene 190 99 104

87. LebererE

HarcusD

BroadbentID

ClarkKL

DignardD

1996 Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A 93 13217 13222

88. BanuettF

HerskowitzI

1996 Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122 2965 2976

89. WilliamsonJD

SilvermanJF

MallakCT

ChristieJD

1996 Atypical cytomorphologic appearance of Cryptococcus neoformans: a report of five cases. Acta Cytol 40 363 370

90. RipponJW

1988 Medical mycology : the pathogenic fungi and the pathogenic actinomycetes Philadelphia Saunders 797

91. WarrenNG

HazenKC

1999 Candida, Cryptococcus, and other yeasts of medical importance.

MurrayPR

BaronEJ

PfallerMA

Manual of clinical microbiology. 7th ed Washington, D.C. ASM Press 1184 1199

92. BemisDA

KrahwinkelDJ

BowmanLA

MondonP

Kwon-ChungKJ

2000 Temperature-sensitive strain of Cryptococcus neoformans producing hyphal elements in a feline nasal granuloma. J Clin Microbiol 38 926 928

93. FreedER

DumaRJ

ShadomyHJ

UtzJP

1971 Meningoencephalitis due to hyphae-forming Cryptococcus neoformans. Am J Clin Pathol 55 30 33

94. AnandiV

BabuPG

JohnTJ

1991 Infection due to Cryptococcus neoformans of unusual morphology in a patient with AIDS. Mycoses 34 377 379

95. ShadomyHJ

UtzJP

1966 Preliminary studies on a hypha-forming mutant of Cryptococcus neoformans. Mycologia 58 383 390

96. ShadomyHJ

LurieHI

1971 Histopathological observations in experimental cryptococcosis caused by a hypha-producing strain of Cryptococcus neoformans (Coward strain) in mice. Sabouraudia 9 6 9

97. ZimmerBL

HempelHO

GoodmanNL

1983 Pathogenicity of the hyphae of Filobasidiella neoformans. Mycopathologia 81 107 110

98. LurieHI

ShadomyHJ

1971 Morphological variations of a hypha-forming strain of Cryptococcus neoformans (Coward strain) in tissues of mice. Sabouraudia 9 10 14

99. FromtlingRA

BlackstockR

HallNK

BulmerGS

1979 Kinetics of lymphocyte transformation in mice immunized with viable avirulent forms of Cryptococcus neoformans. Infect Immun 24 449 453

100. FromtlingRA

BlackstockR

HallNK

BulmerGS

1979 Immunization of mice with an avirulent pseudohyphal form of Cryptococcus neoformans. Mycopathologia 68 179 181

101. FromtlingRA

BlackstockR

BulmerGS

1980 Immunization and passive transfer in immunity in murine cryptococcosis.

KuttinES

BaumGL

Human and animal mycology : proceedings of the VII Congress of ISHAM Amsterdam; Princeton; New York Excerpta Medica; distributors for the USA, Elsevier North-Holland 122 124

102. HeitmanJ

2009 Microbial genetics: Love the one you're with. Nature 460 807 808

103. PoxleitnerMK

CarpenterML

MancusoJJ

WangCJ

DawsonSC

2008 Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science 319 1530 1533

104. CovitzPA

HerskowitzI

MitchellAP

1991 The yeast RME1 gene encodes a putative zinc finger protein that is directly repressed by a1-a2. Genes Dev 5 1982 1989

105. CovitzPA

MitchellAP

1993 Repression by the yeast meiotic inhibitor RME1. Genes Dev 7 1598 1608

106. ShimizuM

LiW

CovitzPA

HaraM

ShindoH

1998 Genomic footprinting of the yeast zinc finger protein Rme1p and its roles in repression of the meiotic activator IME1. Nucleic Acids Res 26 2329 2336

107. MitchellAP

HerskowitzI

1986 Activation of meiosis and sporulation by repression of the RME1 product in yeast. Nature 319 738 742

108. Kwon-ChungKJ

BennettJE

RhodesJC

1982 Taxonomic studies on Filobasidiella species and their anamorphs. Antonie Van Leeuwenhoek 48 25 38

109. LinX

PatelS

LitvintsevaAP

FloydA

MitchellTG

2009 Diploids in the Cryptococcus neoformans serotype A population homozygous for the α mating type originate via unisexual mating. PLoS Pathog 5 e1000283 doi:10.1371/journal.ppat.1000283

110. PitkinJW

PanaccioneDG

WaltonJD

1996 A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum. Microbiology 142 1557 1565

111. ToffalettiDL

RudeTH

JohnstonSA

DurackDT

PerfectJR

1993 Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175 1405 1411

112. ChaskesS

TyndallRL

1978 Pigment production by Cryptococcus neoformans and other Cryptococcus species from aminophenols and diaminobenzenes. J Clin Microbiol 7 146 152

113. CoxGM

MukherjeeJ

ColeGT

CasadevallA

PerfectJR

2000 Urease as a virulence factor in experimental cryptococcosis. Infect Immun 68 443 448

114. HuloN

BairochA

BulliardV

CeruttiL

CucheBA

2008 The 20 years of PROSITE. Nucleic Acids Res 36 D245 249

115. HortonP

ParkKJ

ObayashiT

FujitaN

HaradaH

2007 WoLF PSORT: protein localization predictor. Nucleic Acids Res 35 W585 587

116. Kwon-ChungKJ

KozelTR

EdmanJC

PolacheckI

EllisD

1992 Recent advances in biology and immunology of Cryptococcus neoformans. J Med Vet Mycol 30 Suppl 1 133 142

117. HeitmanJ

AllenB

AlspaughJA

Kwon-ChungKJ

1999 On the origins of congenic MATa and MATa strains of the pathogenic yeast Cryptococcus neoformans. Fungal Genet Biol 28 1 5

118. MooreTD

EdmanJC

1993 The alpha-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 13 1962 1970

119. PerfectJR

LangSD

DurackDT

1980 Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol 101 177 194

120. BahnYS

HicksJK

GilesSS

CoxGM

HeitmanJ

2004 Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade. Eukaryot Cell 3 1476 1491

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#