Integration of Light Signals by the Retinoblastoma Pathway in the Control of S Phase Entry in the Picophytoplanktonic Cell
Although the decision to proceed through cell division depends largely on the metabolic status or the size of the cell, the timing of cell division is often set by internal clocks such as the circadian clock. Light is a major cue for circadian clock entrainment, and for photosynthetic organisms it is also the main source of energy supporting cell growth prior to cell division. Little is known about how light signals are integrated in the control of S phase entry. Here, we present an integrated study of light-dependent regulation of cell division in the marine green alga Ostreococcus. During early G1, the main genes of cell division were transcribed independently of the amount of light, and the timing of S phase did not occur prior to 6 hours after dawn. In contrast S phase commitment and the translation of a G1 A-type cyclin were dependent on the amount of light in a cAMP–dependent manner. CyclinA was shown to interact with the Retinoblastoma (Rb) protein during S phase. Down-regulating Rb bypassed the requirement for CyclinA and cAMP without altering the timing of S phase. Overexpression of CyclinA overrode the cAMP–dependent control of S phase entry and led to early cell division. Therefore, the Rb pathway appears to integrate light signals in the control of S phase entry in Ostreococcus, though differential transcriptional and posttranscriptional regulations of a G1 A-type cyclin. Furthermore, commitment to S phase depends on a cAMP pathway, which regulates the synthesis of CyclinA. We discuss the relative involvements of the metabolic and time/clock signals in the photoperiodic control of cell division.
Vyšlo v časopise:
Integration of Light Signals by the Retinoblastoma Pathway in the Control of S Phase Entry in the Picophytoplanktonic Cell. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000957
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000957
Souhrn
Although the decision to proceed through cell division depends largely on the metabolic status or the size of the cell, the timing of cell division is often set by internal clocks such as the circadian clock. Light is a major cue for circadian clock entrainment, and for photosynthetic organisms it is also the main source of energy supporting cell growth prior to cell division. Little is known about how light signals are integrated in the control of S phase entry. Here, we present an integrated study of light-dependent regulation of cell division in the marine green alga Ostreococcus. During early G1, the main genes of cell division were transcribed independently of the amount of light, and the timing of S phase did not occur prior to 6 hours after dawn. In contrast S phase commitment and the translation of a G1 A-type cyclin were dependent on the amount of light in a cAMP–dependent manner. CyclinA was shown to interact with the Retinoblastoma (Rb) protein during S phase. Down-regulating Rb bypassed the requirement for CyclinA and cAMP without altering the timing of S phase. Overexpression of CyclinA overrode the cAMP–dependent control of S phase entry and led to early cell division. Therefore, the Rb pathway appears to integrate light signals in the control of S phase entry in Ostreococcus, though differential transcriptional and posttranscriptional regulations of a G1 A-type cyclin. Furthermore, commitment to S phase depends on a cAMP pathway, which regulates the synthesis of CyclinA. We discuss the relative involvements of the metabolic and time/clock signals in the photoperiodic control of cell division.
Zdroje
1. SpudichJL
SagerR
1980 Regulation of the Chlamydomonas cell cycle by light and dark. J Cell Biol 85 136 145
2. OldenhofH
ZachlederV
Van den EndeH
2007 The cell cycle of Chlamydomonas reinhardtii: the role of the commitment point. Folia Microbiol (Praha) 52 53 60
3. KorolevaOA
TomlinsonM
ParinyapongP
SakvarelidzeL
LeaderD
2004 CycD1, a putative G1 cyclin from Antirrhinum majus, accelerates the cell cycle in cultured tobacco BY-2 cells by enhancing both G1/S entry and progression through S and G2 phases. Plant Cell 16 2364 2379
4. OakenfullEA
Riou-KhamlichiC
MurrayJA
2002 Plant D-type cyclins and the control of G1 progression. Philos Trans R Soc Lond B Biol Sci 357 749 760
5. HullemanE
BoonstraJ
2001 Regulation of G1 phase progression by growth factors and the extracellular matrix. Cell Mol Life Sci 58 80 93
6. MoserBA
RussellP
2000 Cell cycle regulation in Schizosaccharomyces pombe. Curr Opin Microbiol 3 631 636
7. DonjerkovicD
ScottDW
2000 Regulation of the G1 phase of the mammalian cell cycle. Cell Res 10 1 16
8. HaylesJ
NurseP
1986 Cell cycle regulation in yeast. J Cell Sci Suppl 4 155 170
9. DolznigH
GrebienF
SauerT
BeugH
MullnerEW
2004 Evidence for a size-sensing mechanism in animal cells. Nat Cell Biol 6 899 905
10. EdmundsLNJr
Laval-MartinDL
GotoK
1987 Cell division cycles and circadian clocks. Modeling a metabolic oscillator in the algal flagellate Euglena. Ann N Y Acad Sci 503 459 475
11. MoriT
BinderB
JohnsonCH
1996 Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc Natl Acad Sci U S A 93 10183 10188
12. SchevingLE
1981 Circadian rhythms in cell proliferation: their importance when investigating the basic mechanism of normal versus abnormal growth. Prog Clin Biol Res 59C 39 79
13. GeryS
KomatsuN
BaldjyanL
YuA
KooD
2006 The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22 375 382
14. PregueiroAM
LiuQ
BakerCL
DunlapJC
LorosJJ
2006 The Neurospora checkpoint kinase 2: a regulatory link between the circadian and cell cycles. Science 313 644 649
15. Unsal-KacmazK
MullenTE
KaufmannWK
SancarA
2005 Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol 25 3109 3116
16. HagiwaraS
TakahashiM
YamagishiA
ZhangY
GotoK
2001 Novel findings regarding photoinduced commitments of G1-, S- and G2-phase cells to cell-cycle transitions in darkness and dark-induced G1-, S- and G2-phase arrests in Euglena. Photochem Photobiol 74 726 733
17. GotoK
JohnsonCH
1995 Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtii. J Cell Biol 129 1061 1069
18. CorellouF
SchwartzC
MottaJP
Djouani-Tahri elB
SanchezF
2009 Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote Ostreococcus. Plant Cell 21 3436 3449
19. DerelleE
FerrazC
RombautsS
RouzeP
WordenAZ
2006 Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103 11647 11652
20. RobbensS
KhadarooB
CamassesA
DerelleE
FerrazC
2005 Genome-wide analysis of core cell cycle genes in the unicellular green alga Ostreococcus tauri. Mol Biol Evol 22 589 597
21. CorellouF
CamassesA
LigatL
PeaucellierG
BougetFY
2005 Atypical regulation of a green lineage-specific B-type cyclin-dependent kinase. Plant Physiol 138 1627 1636
22. MoulagerM
MonnierA
JessonB
BouvetR
MosserJ
2007 Light-dependent regulation of cell division in Ostreococcus: evidence for a major transcriptional input. Plant Physiol 144 1360 1369
23. SoniR
CarmichaelJP
ShahZH
MurrayJA
1995 A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7 85 103
24. MadhyasthaHK
RadhaKS
NakajimaY
OmuraS
MaruyamaM
2008 uPA dependent and independent mechanisms of wound healing by C-phycocyanin. J Cell Mol Med 12 2691 2703
25. MohabirG
EdmundsLNJr
1999 Circadian clock regulation of the bimodal rhythm of cyclic AMP in wild-type Euglena. Cell Signal 11 143 147
26. HallDD
MarkwardtDD
ParvizF
HeidemanW
1998 Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae. Embo J 17 4370 4378
27. EhsanH
ReichheldJ-P
RoefL
WittersE
LardonF
1998 Effect of indomethacin on cell cycle dependent cyclic AMP fuxes in tobacco BY-2 cells. FEBS Letters 422 165 169
28. PasqualeSM
GoodenoughUW
1987 Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii. J Cell Biol 105 2279 2292
29. StarkGR
TaylorWR
2006 Control of the G2/M transition. Mol Biotechnol 32 227 248
30. MacalusoM
MontanariM
GiordanoA
2006 Rb family proteins as modulators of gene expression and new aspects regarding the interaction with chromatin remodeling enzymes. Oncogene 25 5263 5267
31. PlescaD
CrosbyME
GuptaD
AlmasanA
2007 E2F4 function in G2: maintaining G2-arrest to prevent mitotic entry with damaged DNA. Cell Cycle 6 1147 1152
32. SageJ
MulliganGJ
AttardiLD
MillerA
ChenS
2000 Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14 3037 3050
33. UmenJG
GoodenoughUW
2001 Control of cell division by a retinoblastoma protein homolog in Chlamydomonas. Genes Dev 15 1652 1661
34. TayaY
1997 RB kinases and RB-binding proteins: new points of view. Trends Biochem Sci 22 14 17
35. DepoortereF
Van KeymeulenA
LukasJ
CostagliolaS
BartkovaJ
1998 A requirement for cyclin D3-cyclin-dependent kinase (cdk)-4 assembly in the cyclic adenosine monophosphate-dependent proliferation of thyrocytes. J Cell Biol 140 1427 1439
36. MatsuoT
2003 Control mechanism of the circadian clock for timing of cell division in vivo.[see comment]. Science 302 234 235
37. FuL
PatelMS
BradleyA
WagnerEF
KarsentyG
2005 The molecular clock mediates leptin-regulated bone formation. Cell 122 803 815
38. Grechez-CassiauA
RayetB
GuillaumondF
TeboulM
DelaunayF
2008 The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem 283 4535 4542
39. CourtiesC
VaquerA
TrousselierM
LautierJ
Chrétiennot-DinetM-J
1994 Smallest eukarotic organism. Nature 370 255
40. EvenY
DurieuxS
EscandeML
LozanoJC
PeaucellierG
2006 CDC2L5, a Cdk-like kinase with RS domain, interacts with the ASF/SF2-associated protein p32 and affects splicing in vivo. J Cell Biochem 99 890 904
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 5
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Common Genetic Variants near the Brittle Cornea Syndrome Locus Influence the Blinding Disease Risk Factor Central Corneal Thickness
- All About Mitochondrial Eve: An Interview with Rebecca Cann
- The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution
- SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling