The Proprotein Convertase Encoded by () Is Required in Corpora Cardiaca Endocrine Cells Producing the Glucose Regulatory Hormone AKH
Peptide hormones are potent signaling molecules that coordinate animal physiology, behavior, and development. A key step in activation of these peptide signals is their proteolytic processing from propeptide precursors by a family of proteases, the subtilisin-like proprotein convertases (PCs). Here, we report the functional dissection of amontillado (amon), which encodes the Drosophila homolog of the mammalian PC2 protein, using cell-type specific inactivation and rescue experiments, and we show that amon is required in the islet-like adipokinetic hormone (AKH)–producing cells that regulate sugar homeostasis. In Drosophila, AKH acts analogously to vertebrate glucagon to increase circulating sugar levels from energy stores, while insulin-like peptides (DILPs) act to decrease sugar levels. amon mutant larvae have significantly reduced hemolymph sugar levels, and thus phenocopy larvae where the AKH–producing cells in the corpora cardiaca have been ablated. Reduction of amon expression in these cells via cell-specific RNA inactivation also results in larvae with reduced sugar levels while expression of amon in AKH cells in an amon mutant background rescues hypoglycemia. Hypoglycemia in larvae resulting from amon RNA inactivation in the AKH cells can be rescued by global expression of the akh gene. Finally, mass spectrometric profiling shows that the production of mature AKH is inhibited in amon mutants. Our data indicate that amon function in the AKH cells is necessary to maintain normal sugar homeostasis, that amon functions upstream of akh, and that loss of mature AKH is correlated with loss of amon activity. These observations indicate that the AKH propeptide is a proteolytic target of the amon proprotein convertase and provide evidence for a conserved role of PC2 in processing metabolic peptide hormones.
Vyšlo v časopise:
The Proprotein Convertase Encoded by () Is Required in Corpora Cardiaca Endocrine Cells Producing the Glucose Regulatory Hormone AKH. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000967
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000967
Souhrn
Peptide hormones are potent signaling molecules that coordinate animal physiology, behavior, and development. A key step in activation of these peptide signals is their proteolytic processing from propeptide precursors by a family of proteases, the subtilisin-like proprotein convertases (PCs). Here, we report the functional dissection of amontillado (amon), which encodes the Drosophila homolog of the mammalian PC2 protein, using cell-type specific inactivation and rescue experiments, and we show that amon is required in the islet-like adipokinetic hormone (AKH)–producing cells that regulate sugar homeostasis. In Drosophila, AKH acts analogously to vertebrate glucagon to increase circulating sugar levels from energy stores, while insulin-like peptides (DILPs) act to decrease sugar levels. amon mutant larvae have significantly reduced hemolymph sugar levels, and thus phenocopy larvae where the AKH–producing cells in the corpora cardiaca have been ablated. Reduction of amon expression in these cells via cell-specific RNA inactivation also results in larvae with reduced sugar levels while expression of amon in AKH cells in an amon mutant background rescues hypoglycemia. Hypoglycemia in larvae resulting from amon RNA inactivation in the AKH cells can be rescued by global expression of the akh gene. Finally, mass spectrometric profiling shows that the production of mature AKH is inhibited in amon mutants. Our data indicate that amon function in the AKH cells is necessary to maintain normal sugar homeostasis, that amon functions upstream of akh, and that loss of mature AKH is correlated with loss of amon activity. These observations indicate that the AKH propeptide is a proteolytic target of the amon proprotein convertase and provide evidence for a conserved role of PC2 in processing metabolic peptide hormones.
Zdroje
1. SossinWS
FisherJM
SchellerRH
1989 Cellular and molecular biology of neuropeptide processing and packaging. Neuron 2 1407 1417
2. StrandFL
1999 New vistas for melanocortins. Finally, an explanation for their pleiotropic functions. Ann N Y Acad Sci 897 1 16
3. ZhouA
WebbG
ZhuXR
SteinerDF
1999 Proteolytic processing in the secretory pathway. Journal of Biological Chemistry 274 20745 20748
4. FurutaM
YanoH
ZhouA
RouilleY
HolstJJ
1997 Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proceedings of the National Academy of Sciences of the United States of America 94 6646 6651
5. NillniEA
2007 Regulation of prohormone convertases in hypothalamic neurons: implications for prothyrotropin-releasing hormone and proopiomelanocortin. Endocrinology 148 4191 4200
6. RouilleY
DuguaySJ
LundK
FurutaM
GongQ
1995 Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: the subtilisin-like proprotein convertases. Front Neuroendocrinol 16 322 361
7. HelwigM
KhorooshiRM
TupsA
BarrettP
ArcherZA
2006 PC1/3 and PC2 gene expression and post-translational endoproteolytic pro-opiomelanocortin processing is regulated by photoperiod in the seasonal Siberian hamster (Phodopus sungorus). J Neuroendocrinol 18 413 425
8. SanchezVC
GoldsteinJ
StuartRC
HovanesianV
HuoL
2004 Regulation of hypothalamic prohormone convertases 1 and 2 and effects on processing of prothyrotropin-releasing hormone. J Clin Invest 114 357 369
9. HookVYH
AzaryanAV
HwangSR
TezapsidisN
1994 Proteases and the emerging role of protease inhibitors in prohormone processing Faseb Journal 8 1269 1278
10. OsterwalderT
KuhnenA
LeisersonWM
KimYS
KeshishianH
2004 Drosophila serpin 4 functions as a neuroserpin-like inhibitor of subtilisin-like proprotein convertases. Journal of Neuroscience 24 5482 5491
11. ReichhartJM
2005 Tip of another iceberg: Drosophila serpins. Trends Cell Biol 15 659 665
12. IkeyaT
GalicM
BelawatP
NairzK
HafenE
2002 Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Current Biology 12 1293 1300
13. KimSK
RulifsonEJ
2004 Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431 316 320
14. ParkJH
SchroederAJ
Helfrich-ForsterC
JacksonFR
EwerJ
2003 Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific defects in execution and circadian timing of ecdysis behavior. Development 130 2645 2656
15. RulifsonEJ
KimSK
NusseR
2002 Ablation of insulin-producing neurons in flies: Growth and diabetic phenotypes. Science 296 1118 1120
16. EwerJ
2005 Behavioral actions of neuropeptides in invertebrates: insights from Drosophila. Horm Behav 48 418 429
17. NasselDR
2002 Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Progress in Neurobiology 68 1 84
18. TaghertPH
VeenstraJA
2003 Drosophila neuropeptide signaling. Advances in Genetics, Vol 49 San Diego Academic Press Inc 1 65
19. ZitnanD
KimYJ
ZitnanovaI
RollerL
AdamsME
2007 Complex steroid-peptide-receptor cascade controls insect ecdysis. Gen Comp Endocrinol 153 88 96
20. DavisMM
O'KeefeSL
PrimroseDA
HodgettsRB
2007 A neuropeptide hormone cascade controls the precise onset of post-eclosion cuticular tanning in Drosophila melanogaster. Development 134 4395 4404
21. HenrichVC
RybczynskiR
GilbertLI
1999 Peptide hormones, steroid hormones, and puffs: mechanisms and models in insect development. Vitam Horm 55 73 125
22. McBrayerZ
OnoH
ShimellM
ParvyJP
BecksteadRB
2007 Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Dev Cell 13 857 871
23. NijhoutHF
1994 Genes on the wing. Science 265 44 45
24. SiekhausDE
FullerRS
1999 A role for amontillado, the Drosophila homolog of the neuropeptide precursor processing protease PC2, in triggering hatching behavior. Journal of Neuroscience 19 6942 6954
25. RoebroekAJ
CreemersJW
PauliIG
BogaertT
Van de VenWJ
1993 Generation of structural and functional diversity in furin-like proteins in Drosophila melanogaster by alternative splicing of the Dfur1 gene. EMBO J 12 1853 1870
26. RoebroekAJM
AyoubiTAY
CreemersJWM
PauliIGL
VandevenWJM
1995 The dfur2 gene of Drosophila melanogaster - genetic organization, expression during embryogenesis, and pro-protein processing activity of its translational product dfurin2. DNA and Cell Biology 14 223 234
27. RayburnLY
RheaJ
JocoySR
BenderM
2009 The proprotein convertase amontillado (amon) is required during Drosophila pupal development. Dev Biol 333 48 56
28. RayburnLYM
GoodingHC
ChoksiSP
MaloneyD
KiddAR
2003 amontillado, the Drosophila homolog of the prohormone processing protease PC2, is required during embryogenesis and early larval development. Genetics 163 227 237
29. HwangJR
SiekhausDE
FullerRS
TaghertPH
LindbergI
2000 Interaction of Drosophila melanogaster prohormone convertase 2 and 7B2 - Insect cell-specific processing and secretion. Journal of Biological Chemistry 275 17886 17893
30. KodrikD
SochaR
SimekP
ZemekR
GoldsworthyGJ
2000 A new member of the AKH/RPCH family that stimulates locomotory activity in the firebug, Pyrrhocoris apterus (Heteroptera). Insect Biochemistry and Molecular Biology 30 489 498
31. KollischGV
LorenzMW
KellnerR
VerhaertPD
HoffmannKH
2000 Structure elucidation and biological activity of an unusual adipokinetic hormone from corpora cardiaca of the butterfly, Vanessa cardui. European Journal of Biochemistry 267 5502 5508
32. SchafferMH
NoyesBE
SlaughterCA
ThorneGC
GaskellSJ
1990 The fruitfly Drosophila melanogaster contains a novel charged adipokinetic hormone family peptide. Biochemical Journal 269 315 320
33. SiegertKJ
KellnerR
GadeG
2000 A third active AKH is present in the pyrgomorphid grasshoppers Phymateus morbillosus and Dictyophorus spumans. Insect Biochemistry and Molecular Biology 30 1061 1067
34. StoneJV
MordueW
BatleyKE
MorrisHR
1976 Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilization during flight. Nature 263 207 211
35. Van der HorstDJ
2003 Insect adipokinetic hormones: release and integration of flight energy metabolism. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 136 217 226
36. IsabelG
MartinJR
ChidamiS
VeenstraJA
RosayP
2005 AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 288 R531 R538
37. LeeGH
ParkJH
2004 Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167 311 323
38. WyattGR
1961 Biochemistry of Insect Hemolymph. Annual Review of Entomology 6 75 &
39. GadeG
2004 Regulation of intermediary metabolism and water balance of insects by neuropeptides. Annual Review of Entomology 49 93 113
40. NoyesBE
KatzFN
SchafferMH
1995 Identification and expression of the Drosophila adipokinetic hormone gene. Molecular and Cellular Endocrinology 109 133 141
41. PredelR
WegenerC
RussellWK
TichySE
RussellDH
2004 Peptidomics of CNS-associated neurohemal systems of adult Drosophila melanogaster: a mass spectrometric survey of peptides from individual flies. J Comp Neurol 474 379 392
42. WegenerC
ReinlT
JanschL
PredelR
2006 Direct mass spectrometric peptide profiling and fragmentation of larval peptide hormone release sites in Drosophila melanogaster reveals tagma-specific peptide expression and differential processing. Journal of Neurochemistry 96 1362 1374
43. RayneRC
O'SheaM
1994 Reconstitution of adipokinetic hormone biosynthesis in-vitro indicates steps in prohormone processing. European Journal of Biochemistry 219 781 789
44. BrogioloW
StockerH
IkeyaT
RintelenF
FernandezR
2001 An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Current Biology 11 213 221
45. KaufmannC
BrownMR
2006 Adipokinetic hormones in the African malaria mosquito, Anopheles gambiae: Identification and expression of genes for two peptides and a putative receptor. Insect Biochemistry and Molecular Biology 36 466 481
46. GobomJ
NordhoffE
2002 Quantitative Analysis of neuropeptides by MALDI-TOF MS.
SilberringJ
EckmanR
Mass spectrometry and hyphenated techniques in neuropeptide research New York Wiley and Sons
47. SzajliE
FeherT
MedzihradszkyKF
2008 Investigating the quantitative nature of MALDI-TOF MS. Mol Cell Proteomics 7 2410 2418
48. FurutaM
ZhouA
WebbG
CarrollR
RavazzolaM
2001 Severe defect in proglucagon processing in islet A-cells of prohormone convertase 2 null mice. Journal of Biological Chemistry 276 27197 27202
49. WangS
TulinaN
CarlinDL
RulifsonEJ
2007 The origin of islet-like cells in Drosophila identifies parallels to the vertebrate endocrine axis. Proceedings of the National Academy of Sciences of the United States of America 104 19873 19878
50. GromadaJ
FranklinI
WollheimCB
2007 Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 28 84 116
51. RouilleY
WestermarkG
MartinSK
SteinerDF
1994 Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1-6 cells. Proc Natl Acad Sci U S A 91 3242 3246
52. PanH
CheFY
PengB
SteinerDF
PintarJE
2006 The role of prohormone convertase-2 in hypothalamic neuropeptide processing: a quantitative neuropeptidomic study. Journal of Neurochemistry 98 1763 1777
53. AllenRG
PengB
PellegrinoMJ
MillerED
GrandyDK
2001 Altered processing of pro-orphanin FQ/nociceptin and pro-opiomelanocortin-derived peptides in the brains of mice expressing defective prohormone convertase 2. Journal of Neuroscience 21 5864 5870
54. JimenezCR
LiKW
DreisewerdK
MansvelderHD
BrussaardAB
1997 Pattern changes of pituitary peptides in rat after salt-loading as detected by means of direct, semiquantitative mass spectrometric profiling. Proc Natl Acad Sci U S A 94 9481 9486
55. JimenezCR
ter MaatA
PienemanA
BurlingameAL
SmitAB
2004 Spatio-temporal dynamics of the egg-laying-inducing peptides during an egg-laying cycle: a semiquantitative matrix-assisted laser desorption/ionization mass spectrometry approach. J Neurochem 89 865 875
56. DiederenJHB
OudejansR
HarthoornLF
Van der HorstDJ
2002 Cell biology of the adipokinetic hormone-producing neurosecretory cells in the locust corpus cardiacum. Microscopy Research and Technique 56 227 236
57. DumonteilE
MagnanC
Ritz-LaserB
KtorzaA
MedaP
2000 Glucose regulates proinsulin and prosomatostatin but not proglucagon messenger ribonucleic acid levels in rat pancreatic islets. Endocrinology 141 174 180
58. MagnanC
PhilippeJ
KassisN
LauryMC
PenicaudL
1995 In vivo effects of glucose and insulin on secretion and gene expression of glucagon in rats. Endocrinology 136 5370 5376
59. WebbGC
DeyA
WangJ
SteinJ
MilewskiM
2004 Altered proglucagon processing in an alpha-cell line derived from prohormone convertase 2 null mouse islets. Journal of Biological Chemistry 279 31068 31075
60. Helfrich-ForsterC
TauberM
ParkJH
Muhlig-VersenM
SchneuwlyS
2000 Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J Neurosci 20 3339 3353
61. BrandAH
PerrimonN
1993 Targeted Gene Expression as a means of altering cell fates and generating dominant phenotypes. Development 118 401 415
62. CaiHN
ArnostiDN
LevineM
1996 Long-range repression in the Drosophila embryo. Proc Natl Acad Sci U S A 93 9309 9314
63. WegenerC
NeupertS
PredelR
2010 Direct MALDI-TOF mass spectrometric peptide profiling of neuroendocrine tissue of Drosophila. Methods Mol Biol 615 117 127
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 5
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Common Genetic Variants near the Brittle Cornea Syndrome Locus Influence the Blinding Disease Risk Factor Central Corneal Thickness
- All About Mitochondrial Eve: An Interview with Rebecca Cann
- The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution
- SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling