#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution


The understanding of selective constraints affecting genes is a major issue in biology. It is well established that gene expression level is a major determinant of the rate of protein evolution, but the reasons for this relationship remain highly debated. Here we demonstrate that gene expression is also a major determinant of the evolution of gene dosage: the rate of gene losses after whole genome duplications in the Paramecium lineage is negatively correlated to the level of gene expression, and this relationship is not a byproduct of other factors known to affect the fate of gene duplicates. This indicates that changes in gene dosage are generally more deleterious for highly expressed genes. This rule also holds for other taxa: in yeast, we find a clear relationship between gene expression level and the fitness impact of reduction in gene dosage. To explain these observations, we propose a model based on the fact that the optimal expression level of a gene corresponds to a trade-off between the benefit and cost of its expression. This COSTEX model predicts that selective pressure against mutations changing gene expression level or affecting the encoded protein should on average be stronger in highly expressed genes and hence that both the frequency of gene loss and the rate of protein evolution should correlate negatively with gene expression. Thus, the COSTEX model provides a simple and common explanation for the general relationship observed between the level of gene expression and the different facets of gene evolution.


Vyšlo v časopise: The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000944
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000944

Souhrn

The understanding of selective constraints affecting genes is a major issue in biology. It is well established that gene expression level is a major determinant of the rate of protein evolution, but the reasons for this relationship remain highly debated. Here we demonstrate that gene expression is also a major determinant of the evolution of gene dosage: the rate of gene losses after whole genome duplications in the Paramecium lineage is negatively correlated to the level of gene expression, and this relationship is not a byproduct of other factors known to affect the fate of gene duplicates. This indicates that changes in gene dosage are generally more deleterious for highly expressed genes. This rule also holds for other taxa: in yeast, we find a clear relationship between gene expression level and the fitness impact of reduction in gene dosage. To explain these observations, we propose a model based on the fact that the optimal expression level of a gene corresponds to a trade-off between the benefit and cost of its expression. This COSTEX model predicts that selective pressure against mutations changing gene expression level or affecting the encoded protein should on average be stronger in highly expressed genes and hence that both the frequency of gene loss and the rate of protein evolution should correlate negatively with gene expression. Thus, the COSTEX model provides a simple and common explanation for the general relationship observed between the level of gene expression and the different facets of gene evolution.


Zdroje

1. TorresEM

WilliamsBR

AmonA

2008 Aneuploidy: cells losing their balance. Genetics 179 737 746

2. PayerB

LeeJT

2008 X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 42 733 772

3. StrangerBE

ForrestMS

DunningM

IngleCE

BeazleyC

2007 Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315 848 853

4. GonzalezE

KulkarniH

BolivarH

ManganoA

SanchezR

2005 The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307 1434 1440

5. PerryGH

DominyNJ

ClawKG

LeeAS

FieglerH

2007 Diet and the evolution of human amylase gene copy number variation. Nat Genet 39 1256 1260

6. NairS

MillerB

BarendsM

JaideeA

PatelJ

2008 Adaptive copy number evolution in malaria parasites. PLoS Genet 4 e1000243 doi:10.1371/journal.pgen.1000243

7. Ohno

1970 Evolution by gene duplication; Unwin A, editor London.

8. WolfeKH

2001 Yesterday's polyploids and the mystery of diploidization. Nat Rev Genet 2 333 341

9. ScannellDR

FrankAC

ConantGC

ByrneKP

WoolfitM

2007 Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Proc Natl Acad Sci U S A 104 8397 8402

10. SemonM

WolfeKH

2007 Consequences of genome duplication. Curr Opin Genet Dev 17 505 512

11. WalshJB

1995 How often do duplicated genes evolve new functions? Genetics 139 421 428

12. ForceA

LynchM

PickettFB

AmoresA

YanYL

1999 Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151 1531 1545

13. CusackBP

WolfeKH

2007 When gene marriages don't work out: divorce by subfunctionalization. Trends Genet 23 270 272

14. MaereS

De BodtS

RaesJ

CasneufT

Van MontaguM

2005 Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A 102 5454 5459

15. ConantGC

WolfeKH

2007 Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol Syst Biol 3 129

16. PappB

PalC

HurstLD

2003 Dosage sensitivity and the evolution of gene families in yeast. Nature 424 194 197

17. AuryJM

JaillonO

DuretL

NoelB

JubinC

2006 Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444 171 178

18. QianW

ZhangJ

2008 Gene dosage and gene duplicability. Genetics 179 2319 2324

19. SeoigheC

WolfeKH

1999 Yeast genome evolution in the post-genome era. Curr Opin Microbiol 2 548 554

20. ByrneKP

WolfeKH

2005 The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 15 1456 1461

21. DaubinV

OchmanH

2004 Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res 14 1036 1042

22. AlbaMM

CastresanaJ

2005 Inverse relationship between evolutionary rate and age of mammalian genes. Mol Biol Evol 22 598 606

23. AshburnerM

BallCA

BlakeJA

BotsteinD

ButlerH

2000 Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25 25 29

24. DrummondDA

WilkeCO

2008 Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134 341 352

25. SteinmetzLM

ScharfeC

DeutschbauerAM

MokranjacD

HermanZS

2002 Systematic screen for human disease genes in yeast. Nat Genet 31 400 404

26. HolstegeFC

JenningsEG

WyrickJJ

LeeTI

HengartnerCJ

1998 Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95 717 728

27. DopmanEB

HartlDL

2007 A portrait of copy-number polymorphism in Drosophila melanogaster. Proc Natl Acad Sci U S A 104 19920 19925

28. HenrichsenCN

VinckenboschN

ZollnerS

ChaignatE

PradervandS

2009 Segmental copy number variation shapes tissue transcriptomes. Nat Genet 41 424 429

29. SkaletskyH

Kuroda-KawaguchiT

MinxPJ

CordumHS

HillierL

2003 The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423 825 837

30. SemonM

MouchiroudD

DuretL

2005 Relationship between gene expression and GC-content in mammals: statistical significance and biological relevance. Hum Mol Genet 14 421 427

31. WagnerA

2005 Energy constraints on the evolution of gene expression. Mol Biol Evol 22 1365 1374

32. DekelE

AlonU

2005 Optimality and evolutionary tuning of the expression level of a protein. Nature 436 588 592

33. BedfordT

HartlDL

2009 Optimization of gene expression by natural selection. Proc Natl Acad Sci U S A 106 1133 1138

34. GalitskiT

SaldanhaAJ

StylesCA

LanderES

FinkGR

1999 Ploidy regulation of gene expression. Science 285 251 254

35. WangJ

TianL

LeeHS

WeiNE

JiangH

2006 Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172 507 517

36. StuparRM

BhaskarPB

YandellBS

RensinkWA

HartAL

2007 Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics 176 2055 2067

37. DoyleJJ

FlagelLE

PatersonAH

RappRA

SoltisDE

2008 Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42 443 461

38. MastersonJ

1994 Stomatal Size in Fossil Plants: Evidence for Polyploidy in Majority of Angiosperms. Science 264 421 424

39. AndalisAA

StorchovaZ

StylesC

GalitskiT

PellmanD

2004 Defects arising from whole-genome duplications in Saccharomyces cerevisiae. Genetics 167 1109 1121

40. BergerJD

SchmidtHJ

1978 Regulation of macronuclear DNA content in Paramecium tetraurelia. J Cell Biol 76 116 126

41. SnokeMS

BerendonkTU

BarthD

LynchM

2006 Large global effective population sizes in Paramecium. Mol Biol Evol 23 2474 2479

42. DuretL

MouchiroudD

2000 Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol Biol Evol 17 68 74

43. DrummondDA

RavalA

WilkeCO

2006 A single determinant dominates the rate of yeast protein evolution. Mol Biol Evol 23 327 337

44. RochaEP

2006 The quest for the universals of protein evolution. Trends Genet 22 412 416

45. DrummondDA

BloomJD

AdamiC

WilkeCO

ArnoldFH

2005 Why highly expressed proteins evolve slowly. Proc Natl Acad Sci U S A 102 14338 14343

46. EdgarR

DomrachevM

LashAE

2002 Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30 207 210

47. SmythGK

SpeedT

2003 Normalization of cDNA microarray data. Methods 31 265 273

48. GoutJF

DuretL

KahnD

2009 Differential retention of metabolic genes following whole-genome duplication. Mol Biol Evol 26 1067 1072

49. MiaoW

XiongJ

BowenJ

WangW

LiuY

2009 Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PLoS ONE 4 e4429 doi:10.1371/journal.pone.0004429

50. ArnaizO

CainS

CohenJ

SperlingL

2007 ParameciumDB: a community resource that integrates the Paramecium tetraurelia genome sequence with genetic data. Nucleic Acids Res 35 D439 444

51. GavinAC

AloyP

GrandiP

KrauseR

BoescheM

2006 Proteome survey reveals modularity of the yeast cell machinery. Nature 440 631 636

52. IhakaR

GentlemanR

1996 R: A language for data analysis and graphics. Journal of computational and graphical statistics 5 299 314

53. CarbonS

IrelandA

MungallCJ

ShuS

MarshallB

2009 AmiGO: online access to ontology and annotation data. Bioinformatics 25 288 289

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#