#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Post-Replication Repair Suppresses Duplication-Mediated Genome Instability


RAD6 is known to suppress duplication-mediated gross chromosomal rearrangements (GCRs) but not single-copy sequence mediated GCRs. Here, we found that the RAD6- and RAD18-dependent post-replication repair (PRR) and the RAD5-, MMS2-, UBC13-dependent error-free PRR branch acted in concert with the replication stress checkpoint to suppress duplication-mediated GCRs formed by homologous recombination (HR). The Rad5 helicase activity, but not its RING finger, was required to prevent duplication-mediated GCRs, although the function of Rad5 remained dependent upon modification of PCNA at Lys164. The SRS2, SGS1, and HCS1 encoded helicases appeared to interact with Rad5, and epistasis analysis suggested that Srs2 and Hcs1 act upstream of Rad5. In contrast, Sgs1 likely functions downstream of Rad5, potentially by resolving DNA structures formed by Rad5. Our analysis is consistent with models in which PRR prevents replication damage from becoming double strand breaks (DSBs) and/or regulates the activity of HR on DSBs.


Vyšlo v časopise: Post-Replication Repair Suppresses Duplication-Mediated Genome Instability. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000933
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000933

Souhrn

RAD6 is known to suppress duplication-mediated gross chromosomal rearrangements (GCRs) but not single-copy sequence mediated GCRs. Here, we found that the RAD6- and RAD18-dependent post-replication repair (PRR) and the RAD5-, MMS2-, UBC13-dependent error-free PRR branch acted in concert with the replication stress checkpoint to suppress duplication-mediated GCRs formed by homologous recombination (HR). The Rad5 helicase activity, but not its RING finger, was required to prevent duplication-mediated GCRs, although the function of Rad5 remained dependent upon modification of PCNA at Lys164. The SRS2, SGS1, and HCS1 encoded helicases appeared to interact with Rad5, and epistasis analysis suggested that Srs2 and Hcs1 act upstream of Rad5. In contrast, Sgs1 likely functions downstream of Rad5, potentially by resolving DNA structures formed by Rad5. Our analysis is consistent with models in which PRR prevents replication damage from becoming double strand breaks (DSBs) and/or regulates the activity of HR on DSBs.


Zdroje

1. RuppWD

Howard-FlandersP

1968 Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31 291 304

2. RuppWD

WildeCE3rd

RenoDL

Howard-FlandersP

1971 Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J Mol Biol 61 25 44

3. di CaprioL

CoxBS

1981 DNA synthesis in UV-irradiated yeast. Mutat Res 82 69 85

4. AndersenPL

XuF

XiaoW

2008 Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res 18 162 173

5. BlastyakA

PinterL

UnkI

PrakashL

PrakashS

2007 Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell 28 167 175

6. HigginsNP

KatoK

StraussB

1976 A model for replication repair in mammalian cells. J Mol Biol 101 417 425

7. FujiwaraY

TatsumiM

1976 Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanisms. Mutat Res 37 91 110

8. BranzeiD

VanoliF

FoianiM

2008 SUMOylation regulates Rad18-mediated template switch. Nature 456 915 920

9. GoldflessSJ

MoragAS

BelisleKA

SuteraVAJr

LovettST

2006 DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. Mol Cell 21 595 604

10. LiberiG

MaffiolettiG

LuccaC

ChioloI

BaryshnikovaA

2005 Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 19 339 350

11. BaillyV

LauderS

PrakashS

PrakashL

1997 Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J Biol Chem 272 23360 23365

12. JentschS

McGrathJP

VarshavskyA

1987 The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329 131 134

13. GiannattasioM

LazzaroF

PlevaniP

Muzi-FalconiM

2005 The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. J Biol Chem 280 9879 9886

14. FlemingAB

KaoCF

HillyerC

PikaartM

OsleyMA

2008 H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell 31 57 66

15. HwangWW

VenkatasubrahmanyamS

IanculescuAG

TongA

BooneC

2003 A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11 261 266

16. DohmenRJ

MaduraK

BartelB

VarshavskyA

1991 The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme. Proc Natl Acad Sci U S A 88 7351 7355

17. HoegeC

PfanderB

MoldovanGL

PyrowolakisG

JentschS

2002 RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419 135 141

18. FuY

ZhuY

ZhangK

YeungM

DurocherD

2008 Rad6-Rad18 mediates a eukaryotic SOS response by ubiquitinating the 9-1-1 checkpoint clamp. Cell 133 601 611

19. HaracskaL

Torres-RamosCA

JohnsonRE

PrakashS

PrakashL

2004 Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol Cell Biol 24 4267 4274

20. StelterP

UlrichHD

2003 Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425 188 191

21. HofmannRM

PickartCM

1999 Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96 645 653

22. UlrichHD

JentschS

2000 Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. Embo J 19 3388 3397

23. LiefshitzB

SteinlaufR

FriedlA

Eckardt-SchuppF

KupiecM

1998 Genetic interactions between mutants of the ‘error-prone’ repair group of Saccharomyces cerevisiae and their effect on recombination and mutagenesis. Mutat Res 407 135 145

24. DaeeDL

MertzT

LahueRS

2007 Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae. Mol Cell Biol 27 102 110

25. MotegiA

KuntzK

MajeedA

SmithS

MyungK

2006 Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae. Mol Cell Biol 26 1424 1433

26. KatsES

EnserinkJM

MartinezS

KolodnerRD

2009 The Saccharomyces cerevisiae Rad6 postreplication repair and Siz1/Srs2 homologous recombination-inhibiting pathways process DNA damage that arises in asf1 mutants. Mol Cell Biol 29 5226 5237

27. PutnamCD

HayesTK

KolodnerRD

2009 Specific pathways prevent duplication-mediated genome rearrangements. Nature 460 984 989

28. CalzadaA

HodgsonB

KanemakiM

BuenoA

LabibK

2005 Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev 19 1905 1919

29. XuH

BooneC

KleinHL

2004 Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage. Mol Cell Biol 24 7082 7090

30. OsbornAJ

ElledgeSJ

2003 Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 17 1755 1767

31. PutnamCD

JaehnigEJ

KolodnerRD

2009 Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst) 8 974 982

32. AlcasabasAA

OsbornAJ

BachantJ

HuF

WerlerPJ

2001 Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3 958 965

33. PanX

YeP

YuanDS

WangX

BaderJS

2006 A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124 1069 1081

34. PfanderB

MoldovanGL

SacherM

HoegeC

JentschS

2005 SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436 428 433

35. PapouliE

ChenS

DaviesAA

HuttnerD

KrejciL

2005 Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19 123 133

36. LawrenceCW

ChristensenRB

1979 Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J Bacteriol 139 866 876

37. RaguS

FayeG

IraquiI

Masurel-HenemanA

KolodnerRD

2007 Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc Natl Acad Sci U S A 104 9747 9752

38. JohnsonRE

WashingtonMT

HaracskaL

PrakashS

PrakashL

2000 Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature 406 1015 1019

39. HuangME

KolodnerRD

2005 A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol Cell 17 709 720

40. DegtyarevaNP

ChenL

MieczkowskiP

PetesTD

DoetschPW

2008 Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae. Mol Cell Biol 28 5432 5445

41. ErlichRL

FryRC

BegleyTJ

DaeeDL

LahueRS

2008 Anc1, a protein associated with multiple transcription complexes, is involved in postreplication repair pathway in S. cerevisiae. PLoS One 3 e3717

42. KabaniM

MichotK

BoschieroC

WernerM

2005 Anc1 interacts with the catalytic subunits of the general transcription factors TFIID and TFIIF, the chromatin remodeling complexes RSC and INO80, and the histone acetyltransferase complex NuA3. Biochem Biophys Res Commun 332 398 403

43. PutnamCD

PennaneachV

KolodnerRD

2005 Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype. Mol Cell Biol 25 7226 7238

44. PutnamCD

PennaneachV

KolodnerRD

2004 Chromosome healing through terminal deletions generated by de novo telomere additions in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101 13262 13267

45. GangavarapuV

HaracskaL

UnkI

JohnsonRE

PrakashS

2006 Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae. Mol Cell Biol 26 7783 7790

46. PagesV

BressonA

AcharyaN

PrakashS

FuchsRP

2008 Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 180 73 82

47. XiaoW

ChowBL

BroomfieldS

HannaM

2000 The Saccharomyces cerevisiae RAD6 group is composed of an error-prone and two error-free postreplication repair pathways. Genetics 155 1633 1641

48. SchulzVP

ZakianVA

1994 The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76 145 155

49. MyungK

ChenC

KolodnerRD

2001 Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411 1073 1076

50. FriedlAA

LiefshitzB

SteinlaufR

KupiecM

2001 Deletion of the SRS2 gene suppresses elevated recombination and DNA damage sensitivity in rad5 and rad18 mutants of Saccharomyces cerevisiae. Mutat Res 486 137 146

51. UlrichHD

2001 The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MMS2-dependent branch of the RAD6 pathway. Nucleic Acids Res 29 3487 3494

52. BiswasEE

FrickeWM

ChenPH

BiswasSB

1997 Yeast DNA helicase A: cloning, expression, purification, and enzymatic characterization. Biochemistry 36 13277 13284

53. BarbourL

BallLG

ZhangK

XiaoW

2006 DNA damage checkpoints are involved in postreplication repair. Genetics 174 1789 1800

54. BallLG

ZhangK

CobbJA

BooneC

XiaoW

2009 The yeast Shu complex couples error-free post-replication repair to homologous recombination. Mol Microbiol 73 89 102

55. ChenCC

MotegiA

HasegawaY

MyungK

KolodnerR

2006 Genetic analysis of ionizing radiation-induced mutagenesis in Saccharomyces cerevisiae reveals TransLesion Synthesis (TLS) independent of PCNA K164 SUMOylation and ubiquitination. DNA Repair (Amst) 5 1475 1488

56. SaponaroM

CallahanD

ZhengX

KrejciL

HaberJE

2010 Cdk1 targets srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet 6 e1000858

57. CarlileCM

PickartCM

MatunisMJ

CohenRE

2009 Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5. J Biol Chem 284 29326 29334

58. SchiestlRH

PrakashS

PrakashL

1990 The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124 817 831

59. KrejciL

Van KomenS

LiY

VillemainJ

ReddyMS

2003 DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423 305 309

60. VeauteX

JeussetJ

SoustelleC

KowalczykowskiSC

Le CamE

2003 The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423 309 312

61. LopesM

Cotta-RamusinoC

PellicioliA

LiberiG

PlevaniP

2001 The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412 557 561

62. SogoJM

LopesM

FoianiM

2002 Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297 599 602

63. BachratiCZ

HicksonID

2006 Analysis of the DNA unwinding activity of RecQ family helicases. Methods Enzymol 409 86 100

64. BennettRJ

KeckJL

WangJC

1999 Binding specificity determines polarity of DNA unwinding by the Sgs1 protein of S. cerevisiae. J Mol Biol 289 235 248

65. KarowJK

ConstantinouA

LiJL

WestSC

HicksonID

2000 The Bloom's syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci U S A 97 6504 6508

66. van BrabantAJ

YeT

SanzM

GermanIJ

EllisNA

2000 Binding and melting of D-loops by the Bloom syndrome helicase. Biochemistry 39 14617 14625

67. WuL

HicksonID

2003 The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426 870 874

68. RongL

PalladinoF

AguileraA

KleinHL

1991 The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 127 75 85

69. SymingtonLS

1998 Homologous recombination is required for the viability of rad27 mutants. Nucleic Acids Res 26 5589 5595

70. TishkoffDX

FilosiN

GaidaGM

KolodnerRD

1997 A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88 253 263

71. AjimuraM

LeemSH

OgawaH

1993 Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133 51 66

72. IvanovEL

KorolevVG

FabreF

1992 XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132 651 664

73. MaloneRE

WardT

LinS

WaringJ

1990 The RAD50 gene, a member of the double strand break repair epistasis group, is not required for spontaneous mitotic recombination in yeast. Curr Genet 18 111 116

74. SchiestlRH

ZhuJ

PetesTD

1994 Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 14 4493 4500

75. ChenC

KolodnerRD

1999 Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23 81 85

76. AhneF

JhaB

Eckardt-SchuppF

1997 The RAD5 gene product is involved in the avoidance of non-homologous end-joining of DNA double strand breaks in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 25 743 749

77. DeiningerPL

BatzerMA

1999 Alu repeats and human disease. Mol Genet Metab 67 183 193

78. GordeninDA

ResnickMA

1998 Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat Res 400 45 58

79. BatzerMA

DeiningerPL

2002 Alu repeats and human genomic diversity. Nat Rev Genet 3 370 379

80. JiY

EichlerEE

SchwartzS

NichollsRD

2000 Structure of chromosomal duplicons and their role in mediating human genomic disorders. Genome Res 10 597 610

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#