Post-Replication Repair Suppresses Duplication-Mediated Genome Instability
RAD6 is known to suppress duplication-mediated gross chromosomal rearrangements (GCRs) but not single-copy sequence mediated GCRs. Here, we found that the RAD6- and RAD18-dependent post-replication repair (PRR) and the RAD5-, MMS2-, UBC13-dependent error-free PRR branch acted in concert with the replication stress checkpoint to suppress duplication-mediated GCRs formed by homologous recombination (HR). The Rad5 helicase activity, but not its RING finger, was required to prevent duplication-mediated GCRs, although the function of Rad5 remained dependent upon modification of PCNA at Lys164. The SRS2, SGS1, and HCS1 encoded helicases appeared to interact with Rad5, and epistasis analysis suggested that Srs2 and Hcs1 act upstream of Rad5. In contrast, Sgs1 likely functions downstream of Rad5, potentially by resolving DNA structures formed by Rad5. Our analysis is consistent with models in which PRR prevents replication damage from becoming double strand breaks (DSBs) and/or regulates the activity of HR on DSBs.
Vyšlo v časopise:
Post-Replication Repair Suppresses Duplication-Mediated Genome Instability. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000933
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000933
Souhrn
RAD6 is known to suppress duplication-mediated gross chromosomal rearrangements (GCRs) but not single-copy sequence mediated GCRs. Here, we found that the RAD6- and RAD18-dependent post-replication repair (PRR) and the RAD5-, MMS2-, UBC13-dependent error-free PRR branch acted in concert with the replication stress checkpoint to suppress duplication-mediated GCRs formed by homologous recombination (HR). The Rad5 helicase activity, but not its RING finger, was required to prevent duplication-mediated GCRs, although the function of Rad5 remained dependent upon modification of PCNA at Lys164. The SRS2, SGS1, and HCS1 encoded helicases appeared to interact with Rad5, and epistasis analysis suggested that Srs2 and Hcs1 act upstream of Rad5. In contrast, Sgs1 likely functions downstream of Rad5, potentially by resolving DNA structures formed by Rad5. Our analysis is consistent with models in which PRR prevents replication damage from becoming double strand breaks (DSBs) and/or regulates the activity of HR on DSBs.
Zdroje
1. RuppWD
Howard-FlandersP
1968 Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31 291 304
2. RuppWD
WildeCE3rd
RenoDL
Howard-FlandersP
1971 Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J Mol Biol 61 25 44
3. di CaprioL
CoxBS
1981 DNA synthesis in UV-irradiated yeast. Mutat Res 82 69 85
4. AndersenPL
XuF
XiaoW
2008 Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res 18 162 173
5. BlastyakA
PinterL
UnkI
PrakashL
PrakashS
2007 Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell 28 167 175
6. HigginsNP
KatoK
StraussB
1976 A model for replication repair in mammalian cells. J Mol Biol 101 417 425
7. FujiwaraY
TatsumiM
1976 Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanisms. Mutat Res 37 91 110
8. BranzeiD
VanoliF
FoianiM
2008 SUMOylation regulates Rad18-mediated template switch. Nature 456 915 920
9. GoldflessSJ
MoragAS
BelisleKA
SuteraVAJr
LovettST
2006 DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. Mol Cell 21 595 604
10. LiberiG
MaffiolettiG
LuccaC
ChioloI
BaryshnikovaA
2005 Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 19 339 350
11. BaillyV
LauderS
PrakashS
PrakashL
1997 Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J Biol Chem 272 23360 23365
12. JentschS
McGrathJP
VarshavskyA
1987 The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329 131 134
13. GiannattasioM
LazzaroF
PlevaniP
Muzi-FalconiM
2005 The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. J Biol Chem 280 9879 9886
14. FlemingAB
KaoCF
HillyerC
PikaartM
OsleyMA
2008 H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell 31 57 66
15. HwangWW
VenkatasubrahmanyamS
IanculescuAG
TongA
BooneC
2003 A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11 261 266
16. DohmenRJ
MaduraK
BartelB
VarshavskyA
1991 The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme. Proc Natl Acad Sci U S A 88 7351 7355
17. HoegeC
PfanderB
MoldovanGL
PyrowolakisG
JentschS
2002 RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419 135 141
18. FuY
ZhuY
ZhangK
YeungM
DurocherD
2008 Rad6-Rad18 mediates a eukaryotic SOS response by ubiquitinating the 9-1-1 checkpoint clamp. Cell 133 601 611
19. HaracskaL
Torres-RamosCA
JohnsonRE
PrakashS
PrakashL
2004 Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol Cell Biol 24 4267 4274
20. StelterP
UlrichHD
2003 Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425 188 191
21. HofmannRM
PickartCM
1999 Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96 645 653
22. UlrichHD
JentschS
2000 Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. Embo J 19 3388 3397
23. LiefshitzB
SteinlaufR
FriedlA
Eckardt-SchuppF
KupiecM
1998 Genetic interactions between mutants of the ‘error-prone’ repair group of Saccharomyces cerevisiae and their effect on recombination and mutagenesis. Mutat Res 407 135 145
24. DaeeDL
MertzT
LahueRS
2007 Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae. Mol Cell Biol 27 102 110
25. MotegiA
KuntzK
MajeedA
SmithS
MyungK
2006 Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae. Mol Cell Biol 26 1424 1433
26. KatsES
EnserinkJM
MartinezS
KolodnerRD
2009 The Saccharomyces cerevisiae Rad6 postreplication repair and Siz1/Srs2 homologous recombination-inhibiting pathways process DNA damage that arises in asf1 mutants. Mol Cell Biol 29 5226 5237
27. PutnamCD
HayesTK
KolodnerRD
2009 Specific pathways prevent duplication-mediated genome rearrangements. Nature 460 984 989
28. CalzadaA
HodgsonB
KanemakiM
BuenoA
LabibK
2005 Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev 19 1905 1919
29. XuH
BooneC
KleinHL
2004 Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage. Mol Cell Biol 24 7082 7090
30. OsbornAJ
ElledgeSJ
2003 Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 17 1755 1767
31. PutnamCD
JaehnigEJ
KolodnerRD
2009 Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst) 8 974 982
32. AlcasabasAA
OsbornAJ
BachantJ
HuF
WerlerPJ
2001 Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3 958 965
33. PanX
YeP
YuanDS
WangX
BaderJS
2006 A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124 1069 1081
34. PfanderB
MoldovanGL
SacherM
HoegeC
JentschS
2005 SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436 428 433
35. PapouliE
ChenS
DaviesAA
HuttnerD
KrejciL
2005 Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19 123 133
36. LawrenceCW
ChristensenRB
1979 Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J Bacteriol 139 866 876
37. RaguS
FayeG
IraquiI
Masurel-HenemanA
KolodnerRD
2007 Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc Natl Acad Sci U S A 104 9747 9752
38. JohnsonRE
WashingtonMT
HaracskaL
PrakashS
PrakashL
2000 Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature 406 1015 1019
39. HuangME
KolodnerRD
2005 A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol Cell 17 709 720
40. DegtyarevaNP
ChenL
MieczkowskiP
PetesTD
DoetschPW
2008 Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae. Mol Cell Biol 28 5432 5445
41. ErlichRL
FryRC
BegleyTJ
DaeeDL
LahueRS
2008 Anc1, a protein associated with multiple transcription complexes, is involved in postreplication repair pathway in S. cerevisiae. PLoS One 3 e3717
42. KabaniM
MichotK
BoschieroC
WernerM
2005 Anc1 interacts with the catalytic subunits of the general transcription factors TFIID and TFIIF, the chromatin remodeling complexes RSC and INO80, and the histone acetyltransferase complex NuA3. Biochem Biophys Res Commun 332 398 403
43. PutnamCD
PennaneachV
KolodnerRD
2005 Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype. Mol Cell Biol 25 7226 7238
44. PutnamCD
PennaneachV
KolodnerRD
2004 Chromosome healing through terminal deletions generated by de novo telomere additions in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101 13262 13267
45. GangavarapuV
HaracskaL
UnkI
JohnsonRE
PrakashS
2006 Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae. Mol Cell Biol 26 7783 7790
46. PagesV
BressonA
AcharyaN
PrakashS
FuchsRP
2008 Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 180 73 82
47. XiaoW
ChowBL
BroomfieldS
HannaM
2000 The Saccharomyces cerevisiae RAD6 group is composed of an error-prone and two error-free postreplication repair pathways. Genetics 155 1633 1641
48. SchulzVP
ZakianVA
1994 The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76 145 155
49. MyungK
ChenC
KolodnerRD
2001 Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411 1073 1076
50. FriedlAA
LiefshitzB
SteinlaufR
KupiecM
2001 Deletion of the SRS2 gene suppresses elevated recombination and DNA damage sensitivity in rad5 and rad18 mutants of Saccharomyces cerevisiae. Mutat Res 486 137 146
51. UlrichHD
2001 The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MMS2-dependent branch of the RAD6 pathway. Nucleic Acids Res 29 3487 3494
52. BiswasEE
FrickeWM
ChenPH
BiswasSB
1997 Yeast DNA helicase A: cloning, expression, purification, and enzymatic characterization. Biochemistry 36 13277 13284
53. BarbourL
BallLG
ZhangK
XiaoW
2006 DNA damage checkpoints are involved in postreplication repair. Genetics 174 1789 1800
54. BallLG
ZhangK
CobbJA
BooneC
XiaoW
2009 The yeast Shu complex couples error-free post-replication repair to homologous recombination. Mol Microbiol 73 89 102
55. ChenCC
MotegiA
HasegawaY
MyungK
KolodnerR
2006 Genetic analysis of ionizing radiation-induced mutagenesis in Saccharomyces cerevisiae reveals TransLesion Synthesis (TLS) independent of PCNA K164 SUMOylation and ubiquitination. DNA Repair (Amst) 5 1475 1488
56. SaponaroM
CallahanD
ZhengX
KrejciL
HaberJE
2010 Cdk1 targets srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet 6 e1000858
57. CarlileCM
PickartCM
MatunisMJ
CohenRE
2009 Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5. J Biol Chem 284 29326 29334
58. SchiestlRH
PrakashS
PrakashL
1990 The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124 817 831
59. KrejciL
Van KomenS
LiY
VillemainJ
ReddyMS
2003 DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423 305 309
60. VeauteX
JeussetJ
SoustelleC
KowalczykowskiSC
Le CamE
2003 The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423 309 312
61. LopesM
Cotta-RamusinoC
PellicioliA
LiberiG
PlevaniP
2001 The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412 557 561
62. SogoJM
LopesM
FoianiM
2002 Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297 599 602
63. BachratiCZ
HicksonID
2006 Analysis of the DNA unwinding activity of RecQ family helicases. Methods Enzymol 409 86 100
64. BennettRJ
KeckJL
WangJC
1999 Binding specificity determines polarity of DNA unwinding by the Sgs1 protein of S. cerevisiae. J Mol Biol 289 235 248
65. KarowJK
ConstantinouA
LiJL
WestSC
HicksonID
2000 The Bloom's syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci U S A 97 6504 6508
66. van BrabantAJ
YeT
SanzM
GermanIJ
EllisNA
2000 Binding and melting of D-loops by the Bloom syndrome helicase. Biochemistry 39 14617 14625
67. WuL
HicksonID
2003 The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426 870 874
68. RongL
PalladinoF
AguileraA
KleinHL
1991 The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 127 75 85
69. SymingtonLS
1998 Homologous recombination is required for the viability of rad27 mutants. Nucleic Acids Res 26 5589 5595
70. TishkoffDX
FilosiN
GaidaGM
KolodnerRD
1997 A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88 253 263
71. AjimuraM
LeemSH
OgawaH
1993 Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133 51 66
72. IvanovEL
KorolevVG
FabreF
1992 XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132 651 664
73. MaloneRE
WardT
LinS
WaringJ
1990 The RAD50 gene, a member of the double strand break repair epistasis group, is not required for spontaneous mitotic recombination in yeast. Curr Genet 18 111 116
74. SchiestlRH
ZhuJ
PetesTD
1994 Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 14 4493 4500
75. ChenC
KolodnerRD
1999 Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23 81 85
76. AhneF
JhaB
Eckardt-SchuppF
1997 The RAD5 gene product is involved in the avoidance of non-homologous end-joining of DNA double strand breaks in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 25 743 749
77. DeiningerPL
BatzerMA
1999 Alu repeats and human disease. Mol Genet Metab 67 183 193
78. GordeninDA
ResnickMA
1998 Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat Res 400 45 58
79. BatzerMA
DeiningerPL
2002 Alu repeats and human genomic diversity. Nat Rev Genet 3 370 379
80. JiY
EichlerEE
SchwartzS
NichollsRD
2000 Structure of chromosomal duplicons and their role in mediating human genomic disorders. Genome Res 10 597 610
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 5
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Common Genetic Variants near the Brittle Cornea Syndrome Locus Influence the Blinding Disease Risk Factor Central Corneal Thickness
- All About Mitochondrial Eve: An Interview with Rebecca Cann
- The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution
- SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling