Bulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from
Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA) using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.
Vyšlo v časopise:
Bulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000942
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000942
Souhrn
Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA) using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.
Zdroje
1. SomervilleC
2007 Biofuels. Curr Biol 17 115 119
2. BassoLC
de AmorimHV
de OliveiraAJ
LopesML
2008 Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8 1155 1163
3. MatsushikaA
InoueH
KodakiT
SawayamaS
2009 Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84 37 53
4. Hahn-HägerdalB
GalbeM
Gorwa-GrauslundMF
LidenG
ZacchiG
2006 Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24 549 556
5. FarrellAE
PlevinRJ
TurnerBT
JonesAD
O'HareM
2006 Ethanol can contribute to energy and environmental goals. Science 311 506 508
6. ArguesoJL
CarazzolleMF
MieczkowskiPA
DuarteFM
NettoOV
2009 Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19 2258 2270
7. StambukB
DunnB
Alves-JrS
DuvalE
SherlockG
2009 Industrial Fuel Ethanol Yeasts Contain Adaptive Copy Number Changes in Genes Involved in Vitamin B1 and B6 Biosynthesis. Genome Res 19 2271 2278
8. SahaBC
2003 Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30 279 291
9. AttfieldPV
BellPJL
2006 Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res 6 862 868
10. ChiangLC
GongCS
ChenLF
TsaoGT
1981 d-Xylulose Fermentation to Ethanol by Saccharomyces cerevisiae. Appl Environ Microbiol 42 284 289
11. WangPY
ShopsisC
SchneiderH
1980 Fermentation of a pentose by yeasts. Biochemical and Biophysical Research Communications 94 248 254
12. GongCS
ClaypoolTA
McCrackenLD
MaunCM
UengPP
1983 Conversion of pentoses by yeasts. Biotechnol Bioeng 25 85 102
13. ChangQ
GriestT
HarterT
PetrashJ
2007 Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. BBA-Molecular Cell Research 1773 321 329
14. TraffKL
JonssonLJ
Hahn-HägerdalB
2002 Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 19 1233 1241
15. ToivariMH
SalusjarviL
RuohonenL
PenttilaM
2004 Endogenous xylose pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 70 3681 3686
16. JeffriesTW
2006 Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17 320 326
17. KötterP
CiriacyM
1993 Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38 776 783
18. KötterP
AmoreR
HollenbergCP
CiriacyM
1990 Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18 493 500
19. HallbornJ
WalfridssonM
AiraksinenU
OjamoH
Hahn-HägerdalB
1991 Xylitol production by recombinant Saccharomyces cerevisiae. Nat Biotechnol 9 1090 1095
20. TantirungkijM
NakashimaN
SekiT
YoshidaT
1993 Construction of xylose-assimilating Saccharomyces cerevisiae. Journal of Fermentation and Bioengineering 75 83 88
21. HoN
ChenZ
BrainardA
1998 Genetically Engineered Saccharomyces Yeast Capable of Effective Cofermentation of Glucose and Xylose. Appl Environ Microbiol 64 1852 1859
22. JinYS
JonesS
ShiNQ
JeffriesTW
2002 Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl Environ Microbiol 68 1232 1239
23. WalfridssonM
BaoX
AnderlundM
LiliusG
BulowL
1996 Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62 4648 4651
24. AmoreR
WilhelmM
HollenbergC
1989 The fermentation of xylose – an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl Microbiol Biotechnol 30 351 357
25. KuyperM
HarhangiH
StaveA
WinklerA
JettenM
2003 High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Research 4 69 78
26. KuyperM
WinklerA
DijkenJ
PronkJ
2004 Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Research 4 655 664
27. KuyperM
HartogMMP
ToirkensMJ
AlmeringMJH
WinklerAA
2005 Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5 399 409
28. MadhavanA
TamalampudiS
UshidaK
KanaiD
KatahiraS
2009 Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82 1067 1078
29. JohanssonB
ChristenssonC
HobleyT
Hahn-HägerdalB
2001 Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67 4249 4255
30. ToivariMH
AristidouA
RuohonenL
PenttilaM
2001 Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3 236 249
31. JinYS
JeffriesTW
2003 Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 106 277 286
32. Träff-BjerreKL
JeppssonM
Hahn-HägerdalB
Gorwa-GrauslundM-F
2004 Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast 21 141 150
33. JeppssonM
TraffK
JohanssonBr
Hahn-HägerdalB
Gorwa-GrauslundM
2003 Efect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3 167 175
34. WalfridssonM
HallbornJ
PenttiläM
KeränenS
Hahn-HägerdalB
1995 Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61 4184 4190
35. JeppssonM
JohanssonB
Hahn-HägerdalB
Gorwa-GrauslundMF
2002 Reduced Oxidative Pentose Phosphate Pathway Flux in Recombinant Xylose-Utilizing Saccharomyces cerevisiae Strains Improves the Ethanol Yield from Xylose. Appl Environ Microbiol 68 1604 1609
36. TraffKL
Otero CorderoRR
van ZylWH
Hahn-HägerdalB
2001 Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67 5668 5674
37. WalfridssonM
AnderlundM
BaoX
Hahn-HägerdalB
1997 Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48 218 224
38. VerhoR
LondesboroughJ
PenttiläM
RichardP
2003 Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69 5892 5897
39. PetschacherB
NidetzkyB
2008 Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 7 9
40. Van VleetJH
JeffriesTW
OlssonL
2008 Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metabolic Engineering 10 360 369
41. BengtssonO
Hahn-HägerdalB
Gorwa-GrauslundMF
2009 Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2 9
42. SondereggerM
SauerU
2003 Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69 1990 1998
43. PitkänenJ-P
RintalaE
AristidouA
RuohonenL
PenttiläM
2005 Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol 67 827 837
44. WahlbomCF
van ZylWH
JönssonLJ
Hahn-HägerdalB
OteroRRC
2003 Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3 319 326
45. NiH
LaplazaJM
JeffriesTW
2007 Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl Environ Microbiol 73 2061 2066
46. CarretoL
EirizMF
GomesAC
PereiraPM
SchullerD
2008 Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics 9 524
47. DunnB
LevineRP
SherlockG
2005 Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics 6 53
48. KvitekDJ
WillJL
GaschAP
2008 Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4 e1000223 doi:10.1371/journal.pgen.1000223
49. FayJC
BenavidesJA
2005 Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet 1 e5 doi:10.1371/journal.pgen.0010005
50. LitiG
CarterDM
MosesAM
WarringerJ
PartsL
2009 Population genomics of domestic and wild yeasts. Nature 458 337 341
51. SchachererJ
ShapiroJA
RuderferDM
KruglyakL
2009 Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458 342 345
52. BrauerMJ
ChristiansonCM
PaiDA
DunhamMJ
2006 Mapping novel traits by array-assisted bulk segregant analysis in Saccharomyces cerevisiae. Genetics 173 1813 1816
53. QuarrieS
Lazic-JancicV
KovacevicD
SteedA
PekicS
1999 Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. Journal of Experimental Botany 50 1299 1306
54. BornemanAR
ForganAH
PretoriusIS
ChambersPJ
2008 Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res 8 1185 1195
55. LouisEJ
1995 The chromosome ends of Saccharomyces cerevisiae. Yeast 11 1553 1573
56. LiH
RuanJ
DurbinR
2008 Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18 1851 1858
57. ZerbinoDR
BirneyE
2008 Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18 821 829
58. NovoM
BigeyF
BeyneE
GaleoteV
GavoryF
2009 Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 106 16333 16338
59. SikorskiR
HieterP
1989 A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces cerevisiae. Genetics 122 19 27
60. Rodriguez-PeñaJ
CidV
ArroyoJ
1998 The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiology Letters 162 155 160
61. HoN
ChangS
1989 Cloning of yeast xylulokinase gene by complementation of E. coli and yeast mutations. Enzyme Microb Technol 11 417 421
62. JinYS
NiH
LaplazaJM
JeffriesTW
2003 Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69 495 503
63. TusherVG
TibshiraniR
ChuG
2001 Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98 5116 5121
64. HibbsM
WallaceG
DunhamMJ
KaiL
TroyanskayaO
2007 Viewing the Larger Context of Genomic Data through Horizontal Integration. Information Visualization, 2007 IV '07 11th International Conference
65. BrauerMJ
HuttenhowerC
AiroldiEM
RosensteinR
MateseJC
2008 Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell 19 352 367
66. DeRisiJL
IyerVR
BrownPO
1997 Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278 680 686
67. GaschAP
SpellmanPT
KaoCM
Carmel-HarelO
EisenMB
2000 Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11 4241 4257
68. EverittBS
1974 Cluster analysis London Heinemann Educational [for] the Social Science Research Council
69. BoyleEI
WengS
GollubJ
JinH
BotsteinD
2004 GO::TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20 3710 3715
70. BruinenbergP
BotP
DijkenJ
ScheffersW
1983 The role of redox balances in the anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 18 287 292
71. JeffriesT
1983 Utilization of xylose by bacteria, yeasts, and fungi.
FiechterA
JeffriesT
Pentoses and Lignin Berlin/Heidelberg Springer 1 32
72. BellPJ
HigginsVJ
AttfieldPV
2001 Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media. Lett Appl Microbiol 32 224 229
73. AdamsJ
HanschePE
1974 Population studies in microorganisms. I. Evolution of diploidy in Saccharomyces cerevisiae. Genetics 76 327 338
74. SchmittME
BrownTA
TrumpowerBL
1990 A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18 3091 3092
75. LeeA
HansenKD
BullardJ
DudoitS
SherlockG
2008 Novel low abundance and transient RNAs in yeast revealed by tiling microarrays and ultra high-throughput sequencing are not conserved across closely related yeast species. PLoS Genet 4 e1000299 10.1371/journal.pgen.1000299
76. TrecoDA
1987 Preparation of Yeast DNA.
AusubelF
BrentR
KingstonR
MooreD
SeidmanJ
Curr Protoc Mol Biol New York John Wiley and Sons, Inc 13.11.11 13.11.12
77. KaoKC
SherlockG
2008 Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet 40 1499 1504
78. GreshamD
RuderferDM
PrattSC
SchachererJ
DunhamMJ
2006 Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science 311 1932 1936
79. SchiestlRH
GietzRD
1989 High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16 339 346
80. WachA
BrachatA
PohlmannR
PhilippsenP
1994 New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10 1793 1808
81. LongtineMS
McKenzieA3rd
DemariniDJ
ShahNG
WachA
1998 Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14 953 961
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 5
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Common Genetic Variants near the Brittle Cornea Syndrome Locus Influence the Blinding Disease Risk Factor Central Corneal Thickness
- All About Mitochondrial Eve: An Interview with Rebecca Cann
- The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution
- SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling