#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Bulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from


Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA) using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.


Vyšlo v časopise: Bulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000942
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000942

Souhrn

Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA) using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.


Zdroje

1. SomervilleC

2007 Biofuels. Curr Biol 17 115 119

2. BassoLC

de AmorimHV

de OliveiraAJ

LopesML

2008 Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8 1155 1163

3. MatsushikaA

InoueH

KodakiT

SawayamaS

2009 Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84 37 53

4. Hahn-HägerdalB

GalbeM

Gorwa-GrauslundMF

LidenG

ZacchiG

2006 Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24 549 556

5. FarrellAE

PlevinRJ

TurnerBT

JonesAD

O'HareM

2006 Ethanol can contribute to energy and environmental goals. Science 311 506 508

6. ArguesoJL

CarazzolleMF

MieczkowskiPA

DuarteFM

NettoOV

2009 Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19 2258 2270

7. StambukB

DunnB

Alves-JrS

DuvalE

SherlockG

2009 Industrial Fuel Ethanol Yeasts Contain Adaptive Copy Number Changes in Genes Involved in Vitamin B1 and B6 Biosynthesis. Genome Res 19 2271 2278

8. SahaBC

2003 Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30 279 291

9. AttfieldPV

BellPJL

2006 Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res 6 862 868

10. ChiangLC

GongCS

ChenLF

TsaoGT

1981 d-Xylulose Fermentation to Ethanol by Saccharomyces cerevisiae. Appl Environ Microbiol 42 284 289

11. WangPY

ShopsisC

SchneiderH

1980 Fermentation of a pentose by yeasts. Biochemical and Biophysical Research Communications 94 248 254

12. GongCS

ClaypoolTA

McCrackenLD

MaunCM

UengPP

1983 Conversion of pentoses by yeasts. Biotechnol Bioeng 25 85 102

13. ChangQ

GriestT

HarterT

PetrashJ

2007 Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. BBA-Molecular Cell Research 1773 321 329

14. TraffKL

JonssonLJ

Hahn-HägerdalB

2002 Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 19 1233 1241

15. ToivariMH

SalusjarviL

RuohonenL

PenttilaM

2004 Endogenous xylose pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 70 3681 3686

16. JeffriesTW

2006 Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17 320 326

17. KötterP

CiriacyM

1993 Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38 776 783

18. KötterP

AmoreR

HollenbergCP

CiriacyM

1990 Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18 493 500

19. HallbornJ

WalfridssonM

AiraksinenU

OjamoH

Hahn-HägerdalB

1991 Xylitol production by recombinant Saccharomyces cerevisiae. Nat Biotechnol 9 1090 1095

20. TantirungkijM

NakashimaN

SekiT

YoshidaT

1993 Construction of xylose-assimilating Saccharomyces cerevisiae. Journal of Fermentation and Bioengineering 75 83 88

21. HoN

ChenZ

BrainardA

1998 Genetically Engineered Saccharomyces Yeast Capable of Effective Cofermentation of Glucose and Xylose. Appl Environ Microbiol 64 1852 1859

22. JinYS

JonesS

ShiNQ

JeffriesTW

2002 Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl Environ Microbiol 68 1232 1239

23. WalfridssonM

BaoX

AnderlundM

LiliusG

BulowL

1996 Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62 4648 4651

24. AmoreR

WilhelmM

HollenbergC

1989 The fermentation of xylose – an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl Microbiol Biotechnol 30 351 357

25. KuyperM

HarhangiH

StaveA

WinklerA

JettenM

2003 High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Research 4 69 78

26. KuyperM

WinklerA

DijkenJ

PronkJ

2004 Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Research 4 655 664

27. KuyperM

HartogMMP

ToirkensMJ

AlmeringMJH

WinklerAA

2005 Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5 399 409

28. MadhavanA

TamalampudiS

UshidaK

KanaiD

KatahiraS

2009 Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82 1067 1078

29. JohanssonB

ChristenssonC

HobleyT

Hahn-HägerdalB

2001 Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67 4249 4255

30. ToivariMH

AristidouA

RuohonenL

PenttilaM

2001 Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3 236 249

31. JinYS

JeffriesTW

2003 Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 106 277 286

32. Träff-BjerreKL

JeppssonM

Hahn-HägerdalB

Gorwa-GrauslundM-F

2004 Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast 21 141 150

33. JeppssonM

TraffK

JohanssonBr

Hahn-HägerdalB

Gorwa-GrauslundM

2003 Efect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3 167 175

34. WalfridssonM

HallbornJ

PenttiläM

KeränenS

Hahn-HägerdalB

1995 Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61 4184 4190

35. JeppssonM

JohanssonB

Hahn-HägerdalB

Gorwa-GrauslundMF

2002 Reduced Oxidative Pentose Phosphate Pathway Flux in Recombinant Xylose-Utilizing Saccharomyces cerevisiae Strains Improves the Ethanol Yield from Xylose. Appl Environ Microbiol 68 1604 1609

36. TraffKL

Otero CorderoRR

van ZylWH

Hahn-HägerdalB

2001 Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67 5668 5674

37. WalfridssonM

AnderlundM

BaoX

Hahn-HägerdalB

1997 Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48 218 224

38. VerhoR

LondesboroughJ

PenttiläM

RichardP

2003 Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69 5892 5897

39. PetschacherB

NidetzkyB

2008 Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 7 9

40. Van VleetJH

JeffriesTW

OlssonL

2008 Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metabolic Engineering 10 360 369

41. BengtssonO

Hahn-HägerdalB

Gorwa-GrauslundMF

2009 Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2 9

42. SondereggerM

SauerU

2003 Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69 1990 1998

43. PitkänenJ-P

RintalaE

AristidouA

RuohonenL

PenttiläM

2005 Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol 67 827 837

44. WahlbomCF

van ZylWH

JönssonLJ

Hahn-HägerdalB

OteroRRC

2003 Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3 319 326

45. NiH

LaplazaJM

JeffriesTW

2007 Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl Environ Microbiol 73 2061 2066

46. CarretoL

EirizMF

GomesAC

PereiraPM

SchullerD

2008 Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics 9 524

47. DunnB

LevineRP

SherlockG

2005 Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics 6 53

48. KvitekDJ

WillJL

GaschAP

2008 Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4 e1000223 doi:10.1371/journal.pgen.1000223

49. FayJC

BenavidesJA

2005 Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet 1 e5 doi:10.1371/journal.pgen.0010005

50. LitiG

CarterDM

MosesAM

WarringerJ

PartsL

2009 Population genomics of domestic and wild yeasts. Nature 458 337 341

51. SchachererJ

ShapiroJA

RuderferDM

KruglyakL

2009 Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458 342 345

52. BrauerMJ

ChristiansonCM

PaiDA

DunhamMJ

2006 Mapping novel traits by array-assisted bulk segregant analysis in Saccharomyces cerevisiae. Genetics 173 1813 1816

53. QuarrieS

Lazic-JancicV

KovacevicD

SteedA

PekicS

1999 Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. Journal of Experimental Botany 50 1299 1306

54. BornemanAR

ForganAH

PretoriusIS

ChambersPJ

2008 Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res 8 1185 1195

55. LouisEJ

1995 The chromosome ends of Saccharomyces cerevisiae. Yeast 11 1553 1573

56. LiH

RuanJ

DurbinR

2008 Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18 1851 1858

57. ZerbinoDR

BirneyE

2008 Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18 821 829

58. NovoM

BigeyF

BeyneE

GaleoteV

GavoryF

2009 Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 106 16333 16338

59. SikorskiR

HieterP

1989 A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces cerevisiae. Genetics 122 19 27

60. Rodriguez-PeñaJ

CidV

ArroyoJ

1998 The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiology Letters 162 155 160

61. HoN

ChangS

1989 Cloning of yeast xylulokinase gene by complementation of E. coli and yeast mutations. Enzyme Microb Technol 11 417 421

62. JinYS

NiH

LaplazaJM

JeffriesTW

2003 Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69 495 503

63. TusherVG

TibshiraniR

ChuG

2001 Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98 5116 5121

64. HibbsM

WallaceG

DunhamMJ

KaiL

TroyanskayaO

2007 Viewing the Larger Context of Genomic Data through Horizontal Integration. Information Visualization, 2007 IV '07 11th International Conference

65. BrauerMJ

HuttenhowerC

AiroldiEM

RosensteinR

MateseJC

2008 Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell 19 352 367

66. DeRisiJL

IyerVR

BrownPO

1997 Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278 680 686

67. GaschAP

SpellmanPT

KaoCM

Carmel-HarelO

EisenMB

2000 Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11 4241 4257

68. EverittBS

1974 Cluster analysis London Heinemann Educational [for] the Social Science Research Council

69. BoyleEI

WengS

GollubJ

JinH

BotsteinD

2004 GO::TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20 3710 3715

70. BruinenbergP

BotP

DijkenJ

ScheffersW

1983 The role of redox balances in the anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 18 287 292

71. JeffriesT

1983 Utilization of xylose by bacteria, yeasts, and fungi.

FiechterA

JeffriesT

Pentoses and Lignin Berlin/Heidelberg Springer 1 32

72. BellPJ

HigginsVJ

AttfieldPV

2001 Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media. Lett Appl Microbiol 32 224 229

73. AdamsJ

HanschePE

1974 Population studies in microorganisms. I. Evolution of diploidy in Saccharomyces cerevisiae. Genetics 76 327 338

74. SchmittME

BrownTA

TrumpowerBL

1990 A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18 3091 3092

75. LeeA

HansenKD

BullardJ

DudoitS

SherlockG

2008 Novel low abundance and transient RNAs in yeast revealed by tiling microarrays and ultra high-throughput sequencing are not conserved across closely related yeast species. PLoS Genet 4 e1000299 10.1371/journal.pgen.1000299

76. TrecoDA

1987 Preparation of Yeast DNA.

AusubelF

BrentR

KingstonR

MooreD

SeidmanJ

Curr Protoc Mol Biol New York John Wiley and Sons, Inc 13.11.11 13.11.12

77. KaoKC

SherlockG

2008 Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet 40 1499 1504

78. GreshamD

RuderferDM

PrattSC

SchachererJ

DunhamMJ

2006 Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science 311 1932 1936

79. SchiestlRH

GietzRD

1989 High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16 339 346

80. WachA

BrachatA

PohlmannR

PhilippsenP

1994 New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10 1793 1808

81. LongtineMS

McKenzieA3rd

DemariniDJ

ShahNG

WachA

1998 Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14 953 961

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#