#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

GC-Biased Evolution Near Human Accelerated Regions


Regions of the genome that have been the target of positive selection specifically along the human lineage are of special importance in human biology. We used high throughput sequencing combined with methods to enrich human genomic samples for particular targets to obtain the sequence of 22 chromosomal samples at high depth in 40 kb neighborhoods of 49 previously identified 100–400 bp elements that show evidence for human accelerated evolution. In addition to selection, the pattern of nucleotide substitutions in several of these elements suggested an historical bias favoring the conversion of weak (A or T) alleles into strong (G or C) alleles. Here we found strong evidence in the derived allele frequency spectra of many of these 40 kb regions for ongoing weak-to-strong fixation bias. Comparison of the nucleotide composition at polymorphic loci to the composition at sites of fixed substitutions additionally reveals the signature of historical weak-to-strong fixation bias in a subset of these regions. Most of the regions with evidence for historical bias do not also have signatures of ongoing bias, suggesting that the evolutionary forces generating weak-to-strong bias are not constant over time. To investigate the role of selection in shaping these regions, we analyzed the spatial pattern of polymorphism in our samples. We found no significant evidence for selective sweeps, possibly because the signal of such sweeps has decayed beyond the power of our tests to detect them. Together, these results do not rule out functional roles for the observed changes in these regions—indeed there is good evidence that the first two are functional elements in humans—but they suggest that a fixation process (such as biased gene conversion) that is biased at the nucleotide level, but is otherwise selectively neutral, could be an important evolutionary force at play in them, both historically and at present.


Vyšlo v časopise: GC-Biased Evolution Near Human Accelerated Regions. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000960
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000960

Souhrn

Regions of the genome that have been the target of positive selection specifically along the human lineage are of special importance in human biology. We used high throughput sequencing combined with methods to enrich human genomic samples for particular targets to obtain the sequence of 22 chromosomal samples at high depth in 40 kb neighborhoods of 49 previously identified 100–400 bp elements that show evidence for human accelerated evolution. In addition to selection, the pattern of nucleotide substitutions in several of these elements suggested an historical bias favoring the conversion of weak (A or T) alleles into strong (G or C) alleles. Here we found strong evidence in the derived allele frequency spectra of many of these 40 kb regions for ongoing weak-to-strong fixation bias. Comparison of the nucleotide composition at polymorphic loci to the composition at sites of fixed substitutions additionally reveals the signature of historical weak-to-strong fixation bias in a subset of these regions. Most of the regions with evidence for historical bias do not also have signatures of ongoing bias, suggesting that the evolutionary forces generating weak-to-strong bias are not constant over time. To investigate the role of selection in shaping these regions, we analyzed the spatial pattern of polymorphism in our samples. We found no significant evidence for selective sweeps, possibly because the signal of such sweeps has decayed beyond the power of our tests to detect them. Together, these results do not rule out functional roles for the observed changes in these regions—indeed there is good evidence that the first two are functional elements in humans—but they suggest that a fixation process (such as biased gene conversion) that is biased at the nucleotide level, but is otherwise selectively neutral, could be an important evolutionary force at play in them, both historically and at present.


Zdroje

1. BejeranoG

PheasantM

MakuninI

StephenS

KentW

2004 Ultraconserved elements in the human genome. Science 304 1321 1325

2. WoolfeA

GoodsonM

GoodeDK

SnellP

McEwenGK

2005 Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3 e7 doi:10.1371/journal.pbio.0030007

3. PollardK

SalamaS

LambertN

LambotM

CoppensS

2006 An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443 167 172

4. PrabhakarS

NoonanJP

PääboS

RubinEM

2006 Accelerated evolution of conserved noncoding sequences in humans. Science 314 786

5. BirdCP

StrangerBE

LiuM

ThomasDJ

IngleCE

2007 Fast-evolving noncoding sequences in the human genome. Genome Biol 8 R118

6. KatzmanS

KernA

BejeranoG

FewellG

FultonL

2007 Human genome ultraconserved elements are ultraselected. Science 317 915

7. PollardK

SalamaS

KingB

KernA

DreszerT

2006 Forces shaping the fastest evolving regions in the human genome. PLoS Genet 2 e168 doi:10.1371/journal.pgen.0020168

8. PrabhakarS

ViselA

AkiyamaJ

ShoukryM

LewisK

2008 Human-specific gain of function in a developmental enhancer. Science 321 1346 1350

9. GaltierN

DuretL

2007 Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends Genet 23 273 277

10. DuretL

GaltierN

2009 Comment on “Human-specific gain of function in a developmental enhancer”. Science 323 714; author reply 714

11. StrathernJ

ShaferB

McGillC

1995 DNA synthesis errors associated with double-strand-break repair. Genetics 140 965 972

12. MaraisG

2003 Biased gene conversion: implications for genome and sex evolution. Trends Genet 19 330 338

13. MeunierJ

DuretL

2004 Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 21 984 990

14. DuretL

ArndtP

2008 The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet 4 e1000071 doi:10.1371/journal.pgen.1000071

15. GaltierN

DuretL

GléminS

RanwezV

2009 GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates. Trends Genet 25 1 5

16. EnardW

PrzeworskiM

FisherSE

LaiCS

WiebeV

2002 Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418 869 872

17. RockmanMV

HahnMW

SoranzoN

ZimprichF

GoldsteinDB

2005 Ancient and recent positive selection transformed opioid cis-regulation in humans. PLoS Biol 3 e387 doi:10.1371/journal.pbio.0030387

18. HodgesE

XuanZ

BalijaV

KramerM

MollaM

2007 Genome-wide in situ exon capture for selective resequencing. Nat Genet 39 1522 1527

19. AlbertT

MollaM

MuznyD

NazarethL

WheelerD

2007 Direct selection of human genomic loci by microarray hybridization. Nat Methods 4 903 905

20. PorrecaG

ZhangK

LiJ

XieB

AustinD

2007 Multiplex amplification of large sets of human exons. Nat Methods 4 931 936

21. OkouD

SteinbergK

MiddleC

CutlerD

AlbertT

2007 Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4 907 909

22. SabetiP

ReichD

HigginsJ

LevineH

RichterD

2002 Detecting recent positive selection in the human genome from haplotype structure. Nature 419 832 837

23. VoightB

KudaravalliS

WenX

PritchardJ

2006 A map of recent positive selection in the human genome. PLoS Biol 4 e72 doi:10.1371/journal.pbio.0040072

24. HaygoodR

FedrigoO

HansonB

YokoyamaKD

WrayGA

2007 Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nat Genet 39 1140 1144

25. Maynard SmithJ

HaighJ

1974 The hitch-hiking effect of a favourable gene. Genet Res 23 23 35

26. KaplanN

HudsonR

LangleyC

1989 The hitchhiking effect revisited. Genetics 123 887 899

27. KimY

StephanW

2002 Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 160 765 777

28. NielsenR

WilliamsonS

KimY

HubiszM

ClarkA

2005 Genomic scans for selective sweeps using SNP data. Genome Res 15 1566 1575

29. WilliamsonSH

HubiszMJ

ClarkAG

PayseurBA

BustamanteCD

2007 Localizing recent adaptive evolution in the human genome. PLoS Genet 3 e90 doi:10.1371/journal.pgen.0030090

30. SabetiP

VarillyP

FryB

LohmuellerJ

HostetterE

2007 Genome-wide detection and characterization of positive selection in human populations. Nature 449 913 918

31. TangK

ThorntonK

StonekingM

2007 A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome. PLoS Biol 5 e171 doi:10.1371/journal.pbio.0050171

32. Applied Biosystems SOLiD System Brochure. System Brochure. URL http://marketing.appliedbiosystems.com/images/Product_Microsites/Solid_Knowledge_MS/pdf/SOLiD_Brochure.pdf

33. AkeyJ

EberleM

RiederM

CarlsonC

ShriverM

2004 Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol 2 e286 doi:10.1371/journal.pbio.0020286

34. AkashiH

1999 Inferring the fitness effects of DNA mutations from polymorphism and divergence data: statistical power to detect directional selection under stationarity and free recombination. Genetics 151 221 238

35. DreszerT

WallG

HausslerD

PollardK

2007 Biased clustered substitutions in the human genome: the footprints of male-driven biased gene conversion. Genome Res 17 1420 1430

36. KongA

GudbjartssonDF

SainzJ

JonsdottirGM

GudjonssonSA

2002 A high-resolution recombination map of the human genome. Nat Genet 31 241 247

37. KentWJ

BaertschR

HinrichsA

MillerW

HausslerD

2003 Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A 100 11484 11489

38. SherryS

WardM

KholodovM

BakerJ

PhanL

2001 dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29 308 311

39. TajimaF

1983 Evolutionary relationship of DNA sequences in finite populations. Genetics 105 437 460

40. WattersonGA

1975 On the number of segregating sites in genetical models without recombination. Theoretical Population Biology 7 256 276

41. PtakSE

RoederAD

StephensM

GiladY

PääboS

2004 Absence of the TAP2 human recombination hotspot in chimpanzees. PLoS Biol 2 e155 doi:10.1371/journal.pbio.0020155

42. TajimaF

1989 Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123 585 595

43. FayJC

WuCI

2000 Hitchhiking under positive Darwinian selection. Genetics 155 1405 1413

44. BlantonHL

RadfordSJ

McMahanS

KearneyHM

IbrahimJG

2005 REC, Drosophila MCM8, drives formation of meiotic crossovers. PLoS Genet 1 e40 doi:10.1371/journal.pgen.0010040

45. RadfordSJ

McMahanS

BlantonHL

SekelskyJ

2007 Heteroduplex DNA in meiotic recombination in Drosophila mei-9 mutants. Genetics 176 63 72

46. FrisseL

HudsonRR

BartoszewiczA

WallJD

DonfackJ

2001 Gene conversion and different population histories may explain the contrast between polymorphism and linkage disequilibrium levels. Am J Hum Genet 69 831 843

47. Pineda-KrchM

RedfieldRJ

2005 Persistence and loss of meiotic recombination hotspots. Genetics 169 2319 2333

48. MyersS

SpencerCC

AutonA

BottoloL

FreemanC

2006 The distribution and causes of meiotic recombination in the human genome. Biochem Soc Trans 34 526 530

49. CoopG

WenX

OberC

PritchardJK

PrzeworskiM

2008 High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319 1395 1398

50. PetersAD

2008 A combination of cis and trans control can solve the hotspot conversion paradox. Genetics 178 1579 1593

51. BersaglieriT

SabetiPC

PattersonN

VanderploegT

SchaffnerSF

2004 Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet 74 1111 1120

52. ThompsonEE

Kuttab-BoulosH

WitonskyD

YangL

RoeBA

2004 CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet 75 1059 1069

53. KeightleyPD

LercherMJ

Eyre-WalkerA

2005 Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol 3 e42 doi:10.1371/journal.pbio.0030042

54. Coriell Cell Repositories. URL http://ccr.coriell.org

55. LiH

DurbinR

2009 Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25 1754 1760

56. LiH

HandsakerB

WysokerA

FennellT

RuanJ

2009 The Sequence Alignment/Map format and SAMtools. Bioinformatics 25 2078 2079

57. PatenB

HerreroJ

BealK

FitzgeraldS

BirneyE

2008 Enredo and Pecan: genome-wide mammalian consistency-based multiple alignment with paralogs. Genome Res 18 1814 1828

58. PatenB

HerreroJ

FitzgeraldS

BealK

FlicekP

2008 Genome-wide nucleotide-level mammalian ancestor reconstruction. Genome Res 18 1829 1843

59. 1000 genomes: A deep catalog of human genetic variation. URL http://1000genomes.org

60. HudsonRR

2002 Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18 337 338

61. SiepelA

HausslerD

2004 Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol Biol Evol 21 468 488

62. KernAD

2009 Correcting the site frequency spectrum for divergence-based ascertainment. PLoS ONE 4 e5152 doi:10.1371/journal.pone.0005152

63. GillespieJH

1997 Junk ain't what junk does: neutral alleles in a selected context. Gene 205 291 299

64. SpencerCC

DeloukasP

HuntS

MullikinJ

MyersS

2006 The influence of recombination on human genetic diversity. PLoS Genet 2 e148 doi:10.1371/journal.pgen.0020148

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#