The Mating Type Locus () and Sexual Reproduction of : Insights into the Evolution of Sex and Sex-Determining Chromosomal Regions in Fungi
Mating in basidiomycetous fungi is often controlled by two unlinked, multiallelic loci encoding homeodomain transcription factors or pheromones/pheromone receptors. In contrast to this tetrapolar organization, Cryptococcus neoformans/Cryptococcus gattii have a bipolar mating system, and a single biallelic locus governs sexual reproduction. The C. neoformans MAT locus is unusually large (>100 kb), contains >20 genes, and enhances virulence. Previous comparative genomic studies provided insights into how this unusual MAT locus might have evolved involving gene acquisitions into two unlinked loci and fusion into one contiguous locus, converting an ancestral tetrapolar system to a bipolar one. Here we tested this model by studying Cryptococcus heveanensis, a sister species to the pathogenic Cryptococcus species complex. An extant sexual cycle was discovered; co-incubating fertile isolates results in the teleomorph (Kwoniella heveanensis) with dikaryotic hyphae, clamp connections, septate basidia, and basidiospores. To characterize the C. heveanensis MAT locus, a fosmid library was screened with C. neoformans/C. gattii MAT genes. Positive fosmids were sequenced and assembled to generate two large probably unlinked MAT gene clusters: one corresponding to the homeodomain locus and the other to the pheromone/receptor locus. Strikingly, two divergent homeodomain genes (SXI1, SXI2) are present, similar to the bE/bW Ustilago maydis paradigm, suggesting one or the other homeodomain gene was recently lost in C. neoformans/C. gattii. Sequencing MAT genes from other C. heveanensis isolates revealed a multiallelic homeodomain locus and at least a biallelic pheromone/receptor locus, similar to known tetrapolar species. Taken together, these studies reveal an extant C. heveanensis sexual cycle, define the structure of its MAT locus consistent with tetrapolar mating, and support the proposed evolutionary model for the bipolar Cryptococcus MAT locus revealing transitions in sexuality concomitant with emergence of a pathogenic clade. These studies provide insight into convergent processes that independently punctuated evolution of sex-determining loci and sex chromosomes in fungi, plants, and animals.
Vyšlo v časopise:
The Mating Type Locus () and Sexual Reproduction of : Insights into the Evolution of Sex and Sex-Determining Chromosomal Regions in Fungi. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000961
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000961
Souhrn
Mating in basidiomycetous fungi is often controlled by two unlinked, multiallelic loci encoding homeodomain transcription factors or pheromones/pheromone receptors. In contrast to this tetrapolar organization, Cryptococcus neoformans/Cryptococcus gattii have a bipolar mating system, and a single biallelic locus governs sexual reproduction. The C. neoformans MAT locus is unusually large (>100 kb), contains >20 genes, and enhances virulence. Previous comparative genomic studies provided insights into how this unusual MAT locus might have evolved involving gene acquisitions into two unlinked loci and fusion into one contiguous locus, converting an ancestral tetrapolar system to a bipolar one. Here we tested this model by studying Cryptococcus heveanensis, a sister species to the pathogenic Cryptococcus species complex. An extant sexual cycle was discovered; co-incubating fertile isolates results in the teleomorph (Kwoniella heveanensis) with dikaryotic hyphae, clamp connections, septate basidia, and basidiospores. To characterize the C. heveanensis MAT locus, a fosmid library was screened with C. neoformans/C. gattii MAT genes. Positive fosmids were sequenced and assembled to generate two large probably unlinked MAT gene clusters: one corresponding to the homeodomain locus and the other to the pheromone/receptor locus. Strikingly, two divergent homeodomain genes (SXI1, SXI2) are present, similar to the bE/bW Ustilago maydis paradigm, suggesting one or the other homeodomain gene was recently lost in C. neoformans/C. gattii. Sequencing MAT genes from other C. heveanensis isolates revealed a multiallelic homeodomain locus and at least a biallelic pheromone/receptor locus, similar to known tetrapolar species. Taken together, these studies reveal an extant C. heveanensis sexual cycle, define the structure of its MAT locus consistent with tetrapolar mating, and support the proposed evolutionary model for the bipolar Cryptococcus MAT locus revealing transitions in sexuality concomitant with emergence of a pathogenic clade. These studies provide insight into convergent processes that independently punctuated evolution of sex-determining loci and sex chromosomes in fungi, plants, and animals.
Zdroje
1. BellG
1982 The Masterpiece of Nature: the Evolution and Genetics of Sexuality. Berkeley University of California Press
2. SmithJM
1978 The Evolution of Sex. Cambridge, UK Cambridge University Press
3. GoddardMR
GodfrayHC
BurtA
2005 Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434 636 640
4. BirdsellJ
WillsC
1996 Significant competitive advantage conferred by meiosis and syngamy in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93 908 912
5. KaltzO
BellG
2002 The ecology and genetics of fitness in Chlamydomonas. XII. repeated sexual episodes increase rates of adaptation to novel environments. Evolution 56 1743 1753
6. GrimbergB
ZeylC
2005 The effects of sex and mutation rate on adaptation in test tubes and to mouse hosts by Saccharomyces cerevisiae. Evolution 59 431 438
7. XuJ
2005 Cost of interacting with sexual partners in a facultative sexual microbe. Genetics 171 1597 1604
8. KronstadJW
StabenC
1997 Mating type in filamentous fungi. Annu Rev Genet 31 245 276
9. CasseltonLA
OlesnickyNS
1998 Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 62 55 70
10. FraserJA
HsuehY-P
FindleyK
HeitmanJ
2007 Evolution of the mating-type locus - the basidiomycetes.
HeitmanJ
KronstadJW
TaylorJW
CasseltonLA
Sex in Fungi: molecular determination and evolutionary implications Washington, DC ASM Press 19 34
11. GlassNL
NelsonMA
1994 Mating-type genes in mycelial ascomycetes.
EsserK
LemkePA
The Mycota I Growth, Differentiation and Sexualtiy Berlin Heidelberg Springer-Verlag 295 306
12. DebuchyR
TurgeonBG
2006 Mating-Type structure, evolution, and function in euascomycetes.
EsserK
The Mycota I- Growth, Differentiation and Sexuality Berlin Heidelberg Springer-Verlag 293 324
13. ButlerG
2007 The evolution of MAT: the ascomycetes.
HeitmanJ
KronstadJW
TaylorJW
CasseltonLA
Sex in Fungi: molecular determination and evolutionary implications Washington, DC ASM Press 3 18
14. CasseltonLA
KuesU
1994 Mating-type genes in Homobasidiomycetes.
EsserK
LemkePA
The Mycota I -Growth, Differentiation and Sexuality Berlin Heidelberg Springer-Verlag 307 321
15. CasseltonLA
ChallenMP
2006 The mating type genes of the Basidiomycetes.
EsserK
The Mycota I -Growth, Differentiation and Sexuality Berlin Heidelberg Springer-Verlag 356 374
16. KotheE
1996 Tetrapolar fungal mating types: sexes by the thousands. FEMS Microbiol Rev 18 65 87
17. HsuehY-P
HeitmanJ
2008 Orchestration of sexual reproduction and virulence by the fungal mating-type locus. Curr Opin Microbiol 11 517 524
18. FraserJA
HeitmanJ
2005 Chromosomal sex-determining regions in animals, plants and fungi. Curr Opin Genet Dev 15 645 651
19. NiermanWC
PainA
AndersonMJ
WortmanJR
KimHS
2005 Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438 1151 1156
20. GalaganJE
CalvoSE
CuomoC
MaLJ
WortmanJR
2005 Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438 1105 1115
21. FraserJA
StajichJE
TarchaEJ
ColeGT
InglisDO
2007 Evolution of the mating type locus: insights gained from the dimorphic primary fungal pathogens Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii. Eukaryot Cell 6 622 629
22. BubnickM
SmulianAG
2007 The MAT1 locus of Histoplasma capsulatum is responsive in a mating type-specific manner. Eukaryot Cell 6 616 621
23. MandelMA
BarkerBM
KrokenS
RounsleySD
OrbachMJ
2007 Genomic and population analyses of the mating type loci in Coccidioides species reveal evidence for sexual reproduction and gene acquisition. Eukaryot Cell 6 1189 1199
24. PöggelerS
HoffB
KückU
2008 Asexual cephalosporin C producer Acremonium chrysogenum carries a functional mating type locus. Appl Environ Microbiol 74 6006 6016
25. BurtA
CarterDA
KoenigGL
WhiteTJ
TaylorJW
1996 Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proc Natl Acad Sci U S A 93 770 773
26. PaolettiM
RydholmC
SchwierEU
AndersonMJ
SzakacsG
2005 Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol 15 1242 1248
27. PringleA
BakerDM
PlattJL
WaresJP
LatgeJP
2005 Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59 1886 1899
28. RydholmC
SzakacsG
LutzoniF
2006 Low genetic variation and no detectable population structure in Aspergillus fumigatus compared to closely related Neosartorya species. Eukaryot Cell 5 650 657
29. HornBW
Ramirez-PradoJH
CarboneI
2009 Sexual reproduction and recombination in the aflatoxin-producing fungus Aspergillus parasiticus. Fungal Genet Biol 46
30. O'GormanCM
FullerHT
DyerPS
2009 Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457 471 474
31. GrosseV
KrappmannS
2008 The asexual pathogen Aspergillus fumigatus expresses functional determinants of Aspergillus nidulans sexual development. Eukaryot Cell 7 1724 1732
32. PyrzakW
MillerKY
MillerBL
2008 Mating type protein Mat1-2 from asexual Aspergillus fumigatus drives sexual reproduction in fertile Aspergillus nidulans. Eukaryot Cell 7 1029 1040
33. Kwon-ChungKJ
1975 A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67 1197 1200
34. Kwon-ChungKJ
1976a Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68 821 833
35. Kwon-ChungKJ
1976b A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. Mycologia 68 943 946
36. FraserJA
SubaranRL
NicholsCB
HeitmanJ
2003 Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans variety gattii: implications for an outbreak on Vancouver Island. Eukaryot Cell 2 1036 1045
37. KellerSM
VivianiMA
EspostoMC
CogliatiM
WickesBL
2003 Molecular and genetic characterization of a serotype A MATa Cryptococcus neoformans isolate. Microbiology 149 131 142
38. NielsenK
CoxGM
WangP
ToffalettiDL
PerfectJR
2003 Sexual cycle of Cryptococcus neoformans var. grubii and virulence of congenic a and α isolates. Infect Immun 71 4831 4841
39. GilesSS
DagenaisTR
BottsMR
KellerNP
HullCM
2009 Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect Immun: Epub ahead of print, May 18
40. BottsMR
GilesSS
GatesMA
KozelTR
HullCM
2009 Isolation and characterization of Cryptococcus neoformans spores reveal a critical role for capsule biosynthesis genes in spore biogenesis. Eukaryot Cell 8 595 605
41. HullCM
HeitmanJ
2002 Genetics of Cryptococcus neoformans. Annu Rev Genet 36 557 615
42. WickesBL
2002 The role of mating type and morphology in Cryptococcus neoformans pathogenesis. Int J Med Microbiol 292 313 329
43. McClellandCM
ChangYC
VarmaA
Kwon-ChungKJ
2004 Uniqueness of the mating system in Cryptococcus neoformans. Trends Microbiol 12 208 212
44. LengelerKB
WangP
CoxGM
PerfectJR
HeitmanJ
2000 Identification of the MATa mating-type locus of Cryptococcus neoformans reveals a serotype A MATa strain thought to have been extinct. Proc Natl Acad Sci USA 97 14555 14460
45. KarosM
ChangYC
McClellandCM
ClarkeDL
FuJ
2000 Mapping of the Cryptococcus neoformans MATα locus: presence of mating type-specific mitogen-activated protein kinase cascade homologs. J Bacteriol 182 6222 6227
46. LengelerKB
FoxDS
FraserJA
AllenA
ForresterK
2002 Mating-type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryot Cell 1 704 718
47. FraserJA
DiezmannS
SubaranRL
AllenA
LengelerKB
2004 Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol 2 e384 doi:10.1371/journal.pbio.0020384
48. RenP
RoncagliaP
SpringerDJ
FanJ
ChaturvediV
2005 Genomic organization and expression of 23 new genes from MATα locus of Cryptococcus neoformans var. gattii. Biochem Biophys Res Commun 326 233 241
49. FraserJA
GilesSS
WeninkEC
Geunes-BoyerSG
WrightJR
2005 Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437 1360 1364
50. HullCM
DavidsonRC
HeitmanJ
2002 Cell identity and sexual development in Cryptococcus neoformans are controlled by the mating-type-specific homeodomain protein Sxi1α. Genes Dev 16 3046 3060
51. HullCM
BoilyMJ
HeitmanJ
2005 Sex-specific homeodomain proteins Sxi1α and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot Cell 4 526 535
52. HsuehYP
IdnurmA
HeitmanJ
2006 Recombination hotspots flank the Cryptococcus mating-type locus: implications for the evolution of a fungal sex chromosome. PLoS Genet 2 e184 doi:10.1371/journal.pgen.0020184
53. HsuehYP
FraserJA
HeitmanJ
2008 Transitions in sexuality: recapitulation of an ancestral tri- and tetrapolar mating system in Cryptococcus neoformans. Eukaryot Cell 7 1847 1855
54. FindleyK
Rodriguez-CarresM
MetinB
KroissJ
FonsecaA
2009 Phylogeny and phenotypic characterization of pathogenic Cryptococcus species and closely related saprobic taxa in the Tremellales. Eukaryot Cell 8 353 361
55. Statzell-TallmanA
BellochC
FellJW
2008 Kwoniella mangroviensis gen. nov., sp.nov. (Tremellales, Basidiomycota), a teleomorphic yeast from mangrove habitats in the Florida Everglades and Bahamas. FEMS Yeast Res 8 103 113
56. OhnoS
1967 Sex chromosomes and sex-linked genes;
A LabhartTM
SamuesLT
ZanderJ
Berlin, Heidelberg, and New York Springer-Verlag
57. FraserJA
HeitmanJ
2004 Evolution of fungal sex chromosomes. Mol Microbiol 51 299 306
58. Marshall GravesJA
2008 Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu Rev Genet 42 565 586
59. KamperJ
ReichmannM
RomeisT
BolkerM
KahmannR
1995 Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81 73 83
60. SchulzB
BanuettF
DahlM
SchlesingerR
SchaferW
1990 The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60 295 306
61. JamesTY
LiouSR
VilgalysR
2004 The genetic structure and diversity of the A and B mating-type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genet Biol 41 813 825
62. LoftusBJ
FungE
RoncagliaP
RowleyD
AmedeoP
2005 The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307 1321 1324
63. Asante-OwusuRN
BanhamAH
BohnertHU
MellorEJ
CasseltonLA
1996 Heterodimerization between two classes of homeodomain proteins in the mushroom Coprinus cinereus brings together potential DNA-binding and activation domains. Gene 172 25 31
64. HoCY
AdamsonJG
HodgesRS
SmithM
1994 Heterodimerization of the yeast MATa1 and MATα2 proteins is mediated by two leucine zipper-like coiled-coil motifs. EMBO J 13 1403 1413
65. BanhamAH
Asante-OwusuRN
GottgensB
ThompsonS
KingsnorthCS
1995 An N-terminal dimerization domain permits homeodomain proteins to choose compatible partners and initiate sexual development in the mushroom Coprinus cinereus. Plant Cell 7 773 783
66. SpitA
HylandRH
MellorEJ
CasseltonLA
1998 A role for heterodimerization in nuclear localization of a homeodomain protein. Proc Natl Acad Sci U S A 95 6228 6233
67. KronstadJW
LeongSA
1990 The b mating-type locus of Ustilago maydis contains variable and constant regions. Genes Dev 4 1384 1395
68. CaldwellGA
NaiderF
BeckerJM
1995 Fungal lipopeptide mating pheromones: a model system for the study of protein prenylation. Microbiol Rev 59 406 422
69. SakagamiY
YoshidaM
IsogaiA
SuzukiA
1981 Peptidal sex hormones inducing conjugation tube formation in compatible mating-tye cells of Tremella mesenterica. Science 212 1525 1527
70. NakaseT
JindamorakotS
Am-InS
PotacharoenW
TanticharoenM
2006 Yeast biodiversity in tropical forests of Asia.
PeterG
RosaC
The Yeast Handbook: Biodiversity and Ecophysiology of Yeasts: Springer Berlin Heidelberg 441 460
71. KahmannR
BolkerM
1996 Self/nonself recognition in fungi: old mysteries and simple solutions. Cell 85 145 148
72. FeldbruggeM
KamperJ
SteinbergG
KahmannR
2004 Regulation of mating and pathogenic development in Ustilago maydis. Curr Opin Microbiol 7 666 672
73. KüesU
2000 Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Revl 64 316 353
74. BrownAJ
CasseltonLA
2001 Mating in mushrooms: increasing the chances but prolonging the affair. Trends Genet 17 393 400
75. BölkerM
UrbanM
KahmannR
1992 The a mating type locus of U. maydis specifies cell signaling components. Cell 68 441 450
76. Niculita-HirzelH
LabbeJ
KohlerA
le TaconF
MartinF
2008 Gene organization of the mating type regions in the ectomycorrhizal fungus Laccaria bicolor reveals distinct evolution between the two mating type loci. New Phytol 180 329 342
77. SchirawskiJ
HeinzeB
WagenknechtM
KahmannR
2005 Mating type loci of Sporisorium reilianum: novel pattern with three a and multiple b specificities. Eukaryot Cell 4 1317 1327
78. BakkerenG
KamperJ
SchirawskiJ
2008 Sex in smut fungi: Structure, function and evolution of mating-type complexes. Fungal Genet Biol 45 Suppl 1 S15 21
79. ButlerG
RasmussenMD
LinMF
SantosMA
SakthikumarS
2009 Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459 657 662
80. ReedyJL
FloydAM
HeitmanJ
2009 Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr Biol 19 891 899
81. SollDR
PujolC
SrikanthaT
2009 Sex: deviant mating in yeast. Curr Biol 19 R509 511
82. Kwon-ChungKJ
BennettJE
RhodesJC
1982 Taxonomic studies on Filobasidiella species and their anamorphs. Antonie van Leeuwenhoek 48 25 38
83. XueC
TadaY
DongX
HeitmanJ
2007 The human fungal pathogen Cryptococcus can complete its sexual cycle during a pathogenic association with plants. Cell Host Microbe 1 263 273
84. BaptistJN
KurtzmanCP
1976 Comparative enzyme patterns in Cryptococcus laurentii and its taxonomic varieties. Mycologia 68 1195 1203
85. TanakaR
TaguchiH
TakeoK
MiyajiM
NishimuraK
1996 Determination of ploidy in Cryptococcus neoformans by flow cytometry. J Med Vet Mycology 34 299 301
86. WickesBL
MayorgaME
EdmanU
EdmanJC
1996 Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the α-mating type. Proc Natl Acad Sci USA 93 7327 7331
87. PitkinJW
PanaccioneDG
WaltonJD
1996 A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum. Microbiology 142 1557 1565
88. SambrookJ
FritschEF
ManiatisT
1989 Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY Cold Spring Harbor Laboratory Press
89. EwingB
HillierL
WendlMC
GreenP
2008 Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8 175 185
90. EwingB
GreenP
1998 Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8 186 194
91. GordonD
AbajianC
GreenP
1998 Consed: A graphical tool for sequence finishing. Genome Res 8 195 202
92. SchwartzS
ZhangZ
FrazerKA
SmitA
RiemerC
2000 PipMaker–a web server for aligning two genomic DNA sequences. Genome Res 10 577 586
93. CarverTJ
RutherfordKM
BerrimanM
RajandreamMA
BarrellBG
2005 ACT: the Artemis Comparison Tool. Bioinformatics 21 3422 3423
94. ColeC
BarberJD
BartonGJ
2008 The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36 W197 201
95. NakaiK
HortonP
1999 PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24 34 36
96. TamuraK
DudleyJ
NeiM
KumarS
2007 MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24 1596 1599
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 5
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Common Genetic Variants near the Brittle Cornea Syndrome Locus Influence the Blinding Disease Risk Factor Central Corneal Thickness
- All About Mitochondrial Eve: An Interview with Rebecca Cann
- The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution
- SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling