#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Mating Type Locus () and Sexual Reproduction of : Insights into the Evolution of Sex and Sex-Determining Chromosomal Regions in Fungi


Mating in basidiomycetous fungi is often controlled by two unlinked, multiallelic loci encoding homeodomain transcription factors or pheromones/pheromone receptors. In contrast to this tetrapolar organization, Cryptococcus neoformans/Cryptococcus gattii have a bipolar mating system, and a single biallelic locus governs sexual reproduction. The C. neoformans MAT locus is unusually large (>100 kb), contains >20 genes, and enhances virulence. Previous comparative genomic studies provided insights into how this unusual MAT locus might have evolved involving gene acquisitions into two unlinked loci and fusion into one contiguous locus, converting an ancestral tetrapolar system to a bipolar one. Here we tested this model by studying Cryptococcus heveanensis, a sister species to the pathogenic Cryptococcus species complex. An extant sexual cycle was discovered; co-incubating fertile isolates results in the teleomorph (Kwoniella heveanensis) with dikaryotic hyphae, clamp connections, septate basidia, and basidiospores. To characterize the C. heveanensis MAT locus, a fosmid library was screened with C. neoformans/C. gattii MAT genes. Positive fosmids were sequenced and assembled to generate two large probably unlinked MAT gene clusters: one corresponding to the homeodomain locus and the other to the pheromone/receptor locus. Strikingly, two divergent homeodomain genes (SXI1, SXI2) are present, similar to the bE/bW Ustilago maydis paradigm, suggesting one or the other homeodomain gene was recently lost in C. neoformans/C. gattii. Sequencing MAT genes from other C. heveanensis isolates revealed a multiallelic homeodomain locus and at least a biallelic pheromone/receptor locus, similar to known tetrapolar species. Taken together, these studies reveal an extant C. heveanensis sexual cycle, define the structure of its MAT locus consistent with tetrapolar mating, and support the proposed evolutionary model for the bipolar Cryptococcus MAT locus revealing transitions in sexuality concomitant with emergence of a pathogenic clade. These studies provide insight into convergent processes that independently punctuated evolution of sex-determining loci and sex chromosomes in fungi, plants, and animals.


Vyšlo v časopise: The Mating Type Locus () and Sexual Reproduction of : Insights into the Evolution of Sex and Sex-Determining Chromosomal Regions in Fungi. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000961
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000961

Souhrn

Mating in basidiomycetous fungi is often controlled by two unlinked, multiallelic loci encoding homeodomain transcription factors or pheromones/pheromone receptors. In contrast to this tetrapolar organization, Cryptococcus neoformans/Cryptococcus gattii have a bipolar mating system, and a single biallelic locus governs sexual reproduction. The C. neoformans MAT locus is unusually large (>100 kb), contains >20 genes, and enhances virulence. Previous comparative genomic studies provided insights into how this unusual MAT locus might have evolved involving gene acquisitions into two unlinked loci and fusion into one contiguous locus, converting an ancestral tetrapolar system to a bipolar one. Here we tested this model by studying Cryptococcus heveanensis, a sister species to the pathogenic Cryptococcus species complex. An extant sexual cycle was discovered; co-incubating fertile isolates results in the teleomorph (Kwoniella heveanensis) with dikaryotic hyphae, clamp connections, septate basidia, and basidiospores. To characterize the C. heveanensis MAT locus, a fosmid library was screened with C. neoformans/C. gattii MAT genes. Positive fosmids were sequenced and assembled to generate two large probably unlinked MAT gene clusters: one corresponding to the homeodomain locus and the other to the pheromone/receptor locus. Strikingly, two divergent homeodomain genes (SXI1, SXI2) are present, similar to the bE/bW Ustilago maydis paradigm, suggesting one or the other homeodomain gene was recently lost in C. neoformans/C. gattii. Sequencing MAT genes from other C. heveanensis isolates revealed a multiallelic homeodomain locus and at least a biallelic pheromone/receptor locus, similar to known tetrapolar species. Taken together, these studies reveal an extant C. heveanensis sexual cycle, define the structure of its MAT locus consistent with tetrapolar mating, and support the proposed evolutionary model for the bipolar Cryptococcus MAT locus revealing transitions in sexuality concomitant with emergence of a pathogenic clade. These studies provide insight into convergent processes that independently punctuated evolution of sex-determining loci and sex chromosomes in fungi, plants, and animals.


Zdroje

1. BellG

1982 The Masterpiece of Nature: the Evolution and Genetics of Sexuality. Berkeley University of California Press

2. SmithJM

1978 The Evolution of Sex. Cambridge, UK Cambridge University Press

3. GoddardMR

GodfrayHC

BurtA

2005 Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434 636 640

4. BirdsellJ

WillsC

1996 Significant competitive advantage conferred by meiosis and syngamy in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93 908 912

5. KaltzO

BellG

2002 The ecology and genetics of fitness in Chlamydomonas. XII. repeated sexual episodes increase rates of adaptation to novel environments. Evolution 56 1743 1753

6. GrimbergB

ZeylC

2005 The effects of sex and mutation rate on adaptation in test tubes and to mouse hosts by Saccharomyces cerevisiae. Evolution 59 431 438

7. XuJ

2005 Cost of interacting with sexual partners in a facultative sexual microbe. Genetics 171 1597 1604

8. KronstadJW

StabenC

1997 Mating type in filamentous fungi. Annu Rev Genet 31 245 276

9. CasseltonLA

OlesnickyNS

1998 Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 62 55 70

10. FraserJA

HsuehY-P

FindleyK

HeitmanJ

2007 Evolution of the mating-type locus - the basidiomycetes.

HeitmanJ

KronstadJW

TaylorJW

CasseltonLA

Sex in Fungi: molecular determination and evolutionary implications Washington, DC ASM Press 19 34

11. GlassNL

NelsonMA

1994 Mating-type genes in mycelial ascomycetes.

EsserK

LemkePA

The Mycota I Growth, Differentiation and Sexualtiy Berlin Heidelberg Springer-Verlag 295 306

12. DebuchyR

TurgeonBG

2006 Mating-Type structure, evolution, and function in euascomycetes.

EsserK

The Mycota I- Growth, Differentiation and Sexuality Berlin Heidelberg Springer-Verlag 293 324

13. ButlerG

2007 The evolution of MAT: the ascomycetes.

HeitmanJ

KronstadJW

TaylorJW

CasseltonLA

Sex in Fungi: molecular determination and evolutionary implications Washington, DC ASM Press 3 18

14. CasseltonLA

KuesU

1994 Mating-type genes in Homobasidiomycetes.

EsserK

LemkePA

The Mycota I -Growth, Differentiation and Sexuality Berlin Heidelberg Springer-Verlag 307 321

15. CasseltonLA

ChallenMP

2006 The mating type genes of the Basidiomycetes.

EsserK

The Mycota I -Growth, Differentiation and Sexuality Berlin Heidelberg Springer-Verlag 356 374

16. KotheE

1996 Tetrapolar fungal mating types: sexes by the thousands. FEMS Microbiol Rev 18 65 87

17. HsuehY-P

HeitmanJ

2008 Orchestration of sexual reproduction and virulence by the fungal mating-type locus. Curr Opin Microbiol 11 517 524

18. FraserJA

HeitmanJ

2005 Chromosomal sex-determining regions in animals, plants and fungi. Curr Opin Genet Dev 15 645 651

19. NiermanWC

PainA

AndersonMJ

WortmanJR

KimHS

2005 Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438 1151 1156

20. GalaganJE

CalvoSE

CuomoC

MaLJ

WortmanJR

2005 Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438 1105 1115

21. FraserJA

StajichJE

TarchaEJ

ColeGT

InglisDO

2007 Evolution of the mating type locus: insights gained from the dimorphic primary fungal pathogens Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii. Eukaryot Cell 6 622 629

22. BubnickM

SmulianAG

2007 The MAT1 locus of Histoplasma capsulatum is responsive in a mating type-specific manner. Eukaryot Cell 6 616 621

23. MandelMA

BarkerBM

KrokenS

RounsleySD

OrbachMJ

2007 Genomic and population analyses of the mating type loci in Coccidioides species reveal evidence for sexual reproduction and gene acquisition. Eukaryot Cell 6 1189 1199

24. PöggelerS

HoffB

KückU

2008 Asexual cephalosporin C producer Acremonium chrysogenum carries a functional mating type locus. Appl Environ Microbiol 74 6006 6016

25. BurtA

CarterDA

KoenigGL

WhiteTJ

TaylorJW

1996 Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proc Natl Acad Sci U S A 93 770 773

26. PaolettiM

RydholmC

SchwierEU

AndersonMJ

SzakacsG

2005 Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol 15 1242 1248

27. PringleA

BakerDM

PlattJL

WaresJP

LatgeJP

2005 Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59 1886 1899

28. RydholmC

SzakacsG

LutzoniF

2006 Low genetic variation and no detectable population structure in Aspergillus fumigatus compared to closely related Neosartorya species. Eukaryot Cell 5 650 657

29. HornBW

Ramirez-PradoJH

CarboneI

2009 Sexual reproduction and recombination in the aflatoxin-producing fungus Aspergillus parasiticus. Fungal Genet Biol 46

30. O'GormanCM

FullerHT

DyerPS

2009 Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457 471 474

31. GrosseV

KrappmannS

2008 The asexual pathogen Aspergillus fumigatus expresses functional determinants of Aspergillus nidulans sexual development. Eukaryot Cell 7 1724 1732

32. PyrzakW

MillerKY

MillerBL

2008 Mating type protein Mat1-2 from asexual Aspergillus fumigatus drives sexual reproduction in fertile Aspergillus nidulans. Eukaryot Cell 7 1029 1040

33. Kwon-ChungKJ

1975 A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67 1197 1200

34. Kwon-ChungKJ

1976a Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68 821 833

35. Kwon-ChungKJ

1976b A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. Mycologia 68 943 946

36. FraserJA

SubaranRL

NicholsCB

HeitmanJ

2003 Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans variety gattii: implications for an outbreak on Vancouver Island. Eukaryot Cell 2 1036 1045

37. KellerSM

VivianiMA

EspostoMC

CogliatiM

WickesBL

2003 Molecular and genetic characterization of a serotype A MATa Cryptococcus neoformans isolate. Microbiology 149 131 142

38. NielsenK

CoxGM

WangP

ToffalettiDL

PerfectJR

2003 Sexual cycle of Cryptococcus neoformans var. grubii and virulence of congenic a and α isolates. Infect Immun 71 4831 4841

39. GilesSS

DagenaisTR

BottsMR

KellerNP

HullCM

2009 Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect Immun: Epub ahead of print, May 18

40. BottsMR

GilesSS

GatesMA

KozelTR

HullCM

2009 Isolation and characterization of Cryptococcus neoformans spores reveal a critical role for capsule biosynthesis genes in spore biogenesis. Eukaryot Cell 8 595 605

41. HullCM

HeitmanJ

2002 Genetics of Cryptococcus neoformans. Annu Rev Genet 36 557 615

42. WickesBL

2002 The role of mating type and morphology in Cryptococcus neoformans pathogenesis. Int J Med Microbiol 292 313 329

43. McClellandCM

ChangYC

VarmaA

Kwon-ChungKJ

2004 Uniqueness of the mating system in Cryptococcus neoformans. Trends Microbiol 12 208 212

44. LengelerKB

WangP

CoxGM

PerfectJR

HeitmanJ

2000 Identification of the MATa mating-type locus of Cryptococcus neoformans reveals a serotype A MATa strain thought to have been extinct. Proc Natl Acad Sci USA 97 14555 14460

45. KarosM

ChangYC

McClellandCM

ClarkeDL

FuJ

2000 Mapping of the Cryptococcus neoformans MATα locus: presence of mating type-specific mitogen-activated protein kinase cascade homologs. J Bacteriol 182 6222 6227

46. LengelerKB

FoxDS

FraserJA

AllenA

ForresterK

2002 Mating-type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryot Cell 1 704 718

47. FraserJA

DiezmannS

SubaranRL

AllenA

LengelerKB

2004 Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol 2 e384 doi:10.1371/journal.pbio.0020384

48. RenP

RoncagliaP

SpringerDJ

FanJ

ChaturvediV

2005 Genomic organization and expression of 23 new genes from MATα locus of Cryptococcus neoformans var. gattii. Biochem Biophys Res Commun 326 233 241

49. FraserJA

GilesSS

WeninkEC

Geunes-BoyerSG

WrightJR

2005 Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437 1360 1364

50. HullCM

DavidsonRC

HeitmanJ

2002 Cell identity and sexual development in Cryptococcus neoformans are controlled by the mating-type-specific homeodomain protein Sxi1α. Genes Dev 16 3046 3060

51. HullCM

BoilyMJ

HeitmanJ

2005 Sex-specific homeodomain proteins Sxi1α and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot Cell 4 526 535

52. HsuehYP

IdnurmA

HeitmanJ

2006 Recombination hotspots flank the Cryptococcus mating-type locus: implications for the evolution of a fungal sex chromosome. PLoS Genet 2 e184 doi:10.1371/journal.pgen.0020184

53. HsuehYP

FraserJA

HeitmanJ

2008 Transitions in sexuality: recapitulation of an ancestral tri- and tetrapolar mating system in Cryptococcus neoformans. Eukaryot Cell 7 1847 1855

54. FindleyK

Rodriguez-CarresM

MetinB

KroissJ

FonsecaA

2009 Phylogeny and phenotypic characterization of pathogenic Cryptococcus species and closely related saprobic taxa in the Tremellales. Eukaryot Cell 8 353 361

55. Statzell-TallmanA

BellochC

FellJW

2008 Kwoniella mangroviensis gen. nov., sp.nov. (Tremellales, Basidiomycota), a teleomorphic yeast from mangrove habitats in the Florida Everglades and Bahamas. FEMS Yeast Res 8 103 113

56. OhnoS

1967 Sex chromosomes and sex-linked genes;

A LabhartTM

SamuesLT

ZanderJ

Berlin, Heidelberg, and New York Springer-Verlag

57. FraserJA

HeitmanJ

2004 Evolution of fungal sex chromosomes. Mol Microbiol 51 299 306

58. Marshall GravesJA

2008 Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu Rev Genet 42 565 586

59. KamperJ

ReichmannM

RomeisT

BolkerM

KahmannR

1995 Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81 73 83

60. SchulzB

BanuettF

DahlM

SchlesingerR

SchaferW

1990 The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60 295 306

61. JamesTY

LiouSR

VilgalysR

2004 The genetic structure and diversity of the A and B mating-type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genet Biol 41 813 825

62. LoftusBJ

FungE

RoncagliaP

RowleyD

AmedeoP

2005 The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307 1321 1324

63. Asante-OwusuRN

BanhamAH

BohnertHU

MellorEJ

CasseltonLA

1996 Heterodimerization between two classes of homeodomain proteins in the mushroom Coprinus cinereus brings together potential DNA-binding and activation domains. Gene 172 25 31

64. HoCY

AdamsonJG

HodgesRS

SmithM

1994 Heterodimerization of the yeast MATa1 and MATα2 proteins is mediated by two leucine zipper-like coiled-coil motifs. EMBO J 13 1403 1413

65. BanhamAH

Asante-OwusuRN

GottgensB

ThompsonS

KingsnorthCS

1995 An N-terminal dimerization domain permits homeodomain proteins to choose compatible partners and initiate sexual development in the mushroom Coprinus cinereus. Plant Cell 7 773 783

66. SpitA

HylandRH

MellorEJ

CasseltonLA

1998 A role for heterodimerization in nuclear localization of a homeodomain protein. Proc Natl Acad Sci U S A 95 6228 6233

67. KronstadJW

LeongSA

1990 The b mating-type locus of Ustilago maydis contains variable and constant regions. Genes Dev 4 1384 1395

68. CaldwellGA

NaiderF

BeckerJM

1995 Fungal lipopeptide mating pheromones: a model system for the study of protein prenylation. Microbiol Rev 59 406 422

69. SakagamiY

YoshidaM

IsogaiA

SuzukiA

1981 Peptidal sex hormones inducing conjugation tube formation in compatible mating-tye cells of Tremella mesenterica. Science 212 1525 1527

70. NakaseT

JindamorakotS

Am-InS

PotacharoenW

TanticharoenM

2006 Yeast biodiversity in tropical forests of Asia.

PeterG

RosaC

The Yeast Handbook: Biodiversity and Ecophysiology of Yeasts: Springer Berlin Heidelberg 441 460

71. KahmannR

BolkerM

1996 Self/nonself recognition in fungi: old mysteries and simple solutions. Cell 85 145 148

72. FeldbruggeM

KamperJ

SteinbergG

KahmannR

2004 Regulation of mating and pathogenic development in Ustilago maydis. Curr Opin Microbiol 7 666 672

73. KüesU

2000 Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Revl 64 316 353

74. BrownAJ

CasseltonLA

2001 Mating in mushrooms: increasing the chances but prolonging the affair. Trends Genet 17 393 400

75. BölkerM

UrbanM

KahmannR

1992 The a mating type locus of U. maydis specifies cell signaling components. Cell 68 441 450

76. Niculita-HirzelH

LabbeJ

KohlerA

le TaconF

MartinF

2008 Gene organization of the mating type regions in the ectomycorrhizal fungus Laccaria bicolor reveals distinct evolution between the two mating type loci. New Phytol 180 329 342

77. SchirawskiJ

HeinzeB

WagenknechtM

KahmannR

2005 Mating type loci of Sporisorium reilianum: novel pattern with three a and multiple b specificities. Eukaryot Cell 4 1317 1327

78. BakkerenG

KamperJ

SchirawskiJ

2008 Sex in smut fungi: Structure, function and evolution of mating-type complexes. Fungal Genet Biol 45 Suppl 1 S15 21

79. ButlerG

RasmussenMD

LinMF

SantosMA

SakthikumarS

2009 Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459 657 662

80. ReedyJL

FloydAM

HeitmanJ

2009 Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr Biol 19 891 899

81. SollDR

PujolC

SrikanthaT

2009 Sex: deviant mating in yeast. Curr Biol 19 R509 511

82. Kwon-ChungKJ

BennettJE

RhodesJC

1982 Taxonomic studies on Filobasidiella species and their anamorphs. Antonie van Leeuwenhoek 48 25 38

83. XueC

TadaY

DongX

HeitmanJ

2007 The human fungal pathogen Cryptococcus can complete its sexual cycle during a pathogenic association with plants. Cell Host Microbe 1 263 273

84. BaptistJN

KurtzmanCP

1976 Comparative enzyme patterns in Cryptococcus laurentii and its taxonomic varieties. Mycologia 68 1195 1203

85. TanakaR

TaguchiH

TakeoK

MiyajiM

NishimuraK

1996 Determination of ploidy in Cryptococcus neoformans by flow cytometry. J Med Vet Mycology 34 299 301

86. WickesBL

MayorgaME

EdmanU

EdmanJC

1996 Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the α-mating type. Proc Natl Acad Sci USA 93 7327 7331

87. PitkinJW

PanaccioneDG

WaltonJD

1996 A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum. Microbiology 142 1557 1565

88. SambrookJ

FritschEF

ManiatisT

1989 Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY Cold Spring Harbor Laboratory Press

89. EwingB

HillierL

WendlMC

GreenP

2008 Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8 175 185

90. EwingB

GreenP

1998 Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8 186 194

91. GordonD

AbajianC

GreenP

1998 Consed: A graphical tool for sequence finishing. Genome Res 8 195 202

92. SchwartzS

ZhangZ

FrazerKA

SmitA

RiemerC

2000 PipMaker–a web server for aligning two genomic DNA sequences. Genome Res 10 577 586

93. CarverTJ

RutherfordKM

BerrimanM

RajandreamMA

BarrellBG

2005 ACT: the Artemis Comparison Tool. Bioinformatics 21 3422 3423

94. ColeC

BarberJD

BartonGJ

2008 The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36 W197 201

95. NakaiK

HortonP

1999 PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24 34 36

96. TamuraK

DudleyJ

NeiM

KumarS

2007 MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24 1596 1599

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#