Binding of NF-κB to Nucleosomes: Effect of Translational Positioning, Nucleosome Remodeling and Linker Histone H1
NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A–H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes.
Vyšlo v časopise:
Binding of NF-κB to Nucleosomes: Effect of Translational Positioning, Nucleosome Remodeling and Linker Histone H1. PLoS Genet 9(9): e32767. doi:10.1371/journal.pgen.1003830
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003830
Souhrn
NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A–H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes.
Zdroje
1. LugerK, MaderAW, RichmondRK, SargentDF, RichmondTJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260.
2. Van Holde K (1989) Chromatin : Springer-Verlag, New York.
3. ImbalzanoAN, KwonH, GreenMR, KingstonRE (1994) Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370: 481–485.
4. HanM, GrunsteinM (1988) Nucleosome loss activates yeast downstream promoters in vivo. Cell 55: 1137–1145.
5. BeatoM, EisfeldK (1997) Transcription factor access to chromatin. Nucleic Acids Res 25: 3559–3563.
6. PerlmannT, WrangeO (1988) Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome. EMBO J 7: 3073–3079.
7. PinaB, BruggemeierU, BeatoM (1990) Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell 60: 719–731.
8. ArcherTK, CordingleyMG, WolfordRG, HagerGL (1991) Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol Cell Biol 11: 688–698.
9. FascherKD, SchmitzJ, HorzW (1990) Role of trans-activating proteins in the generation of active chromatin at the PHO5 promoter in S. cerevisiae. EMBO J 9: 2523–2528.
10. TaylorIC, WorkmanJL, SchuetzTJ, KingstonRE (1991) Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev 5: 1285–1298.
11. PazinMJ, HermannJW, KadonagaJT (1998) Promoter structure and transcriptional activation with chromatin templates assembled in vitro. A single Gal4-VP16 dimer binds to chromatin or to DNA with comparable affinity. The Journal of biological chemistry 273: 34653–34660.
12. AdamsCC, WorkmanJL (1995) Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol Cell Biol 15: 1405–1421.
13. StegerDJ, WorkmanJL (1997) Stable co-occupancy of transcription factors and histones at the HIV-1 enhancer. EMBO J 16: 2463–2472.
14. SheridanPL, ShelineCT, CannonK, VozML, PazinMJ, et al. (1995) Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro. Genes & Development 9: 2090–2104.
15. NatoliG (2006) Tuning up inflammation: how DNA sequence and chromatin organization control the induction of inflammatory genes by NF-kappaB. FEBS Lett 580: 2843–2849.
16. SenR, BaltimoreD (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46: 705–716.
17. KawakamiK, ScheidereitC, RoederRG (1988) Identification and purification of a human immunoglobulin-enhancer-binding protein (NF-kappa B) that activates transcription from a human immunodeficiency virus type 1 promoter in vitro. Proc Natl Acad Sci U S A 85: 4700–4704.
18. LenardoMJ, BaltimoreD (1989) NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58: 227–229.
19. GhoshS, HaydenMS (2008) New regulators of NF-kappaB in inflammation. Nat Rev Immunol 8: 837–848.
20. DiDonatoJA, MercurioF, KarinM (2012) NF-kappaB and the link between inflammation and cancer. Immunol Rev 246: 379–400.
21. FeldmannM, AndreakosE, SmithC, BondesonJ, YoshimuraS, et al. (2002) Is NF-kappaB a useful therapeutic target in rheumatoid arthritis? Ann Rheum Dis 61 Suppl 2: ii13–18.
22. KarinM, GretenFR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5: 749–759.
23. GhoshG, WangVY, HuangDB, FuscoA (2012) NF-kappaB regulation: lessons from structures. Immunol Rev 246: 36–58.
24. KunschC, RubenSM, RosenCA (1992) Selection of optimal kappa B/Rel DNA-binding motifs: interaction of both subunits of NF-kappa B with DNA is required for transcriptional activation. Mol Cell Biol 12: 4412–4421.
25. HaydenMS, GhoshS (2004) Signaling to NF-kappaB. Genes Dev 18: 2195–2224.
26. WongD, TeixeiraA, OikonomopoulosS, HumburgP, LoneIN, et al. (2011) Extensive characterization of NF-kappaB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits. Genome Biol 12: R70.
27. SiggersT, ChangAB, TeixeiraA, WongD, WilliamsKJ, et al. (2012) Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-kappaB family DNA binding. Nat Immunol 13: 95–102.
28. SaccaniS, PantanoS, NatoliG (2001) Two waves of nuclear factor kappaB recruitment to target promoters. J Exp Med 193: 1351–1359.
29. AgelopoulosM, ThanosD (2006) Epigenetic determination of a cell-specific gene expression program by ATF-2 and the histone variant macroH2A. EMBO J 25: 4843–4853.
30. ArmenanteF, MerolaM, FuriaA, ToveyM, PalmieriM (1999) Interleukin-6 repression is associated with a distinctive chromatin structure of the gene. Nucleic Acids Res 27: 4483–4490.
31. NatoliG, SaccaniS, BosisioD, MarazziI (2005) Interactions of NF-kappaB with chromatin: the art of being at the right place at the right time. Nat Immunol 6: 439–445.
32. NatoliG (2011) Specialized chromatin patterns in the control of inflammatory gene expression. Curr Top Microbiol Immunol 349: 61–72.
33. NatoliG (2012) NF-kappaB and chromatin: ten years on the path from basic mechanisms to candidate drugs. Immunol Rev 246: 183–192.
34. Ramirez-CarrozziVR, NazarianAA, LiCC, GoreSL, SridharanR, et al. (2006) Selective and antagonistic functions of SWI/SNF and Mi-2beta nucleosome remodeling complexes during an inflammatory response. Genes Dev 20: 282–296.
35. Ramirez-CarrozziVR, BraasD, BhattDM, ChengCS, HongC, et al. (2009) A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138: 114–128.
36. WeinmannAS, PlevySE, SmaleST (1999) Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription. Immunity 11: 665–675.
37. UtleyRT, CoteJ, Owen-HughesT, WorkmanJL (1997) SWI/SNF stimulates the formation of disparate activator-nucleosome complexes but is partially redundant with cooperative binding. J Biol Chem 272: 12642–12649.
38. AngelovD, LenouvelF, HansF, MullerCW, BouvetP, et al. (2004) The histone octamer is invisible when NF-kappaB binds to the nucleosome. J Biol Chem 279: 42374–42382.
39. ChenFE, HuangDB, ChenYQ, GhoshG (1998) Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 391: 410–413.
40. CramerP, LarsonCJ, VerdineGL, MullerCW (1997) Structure of the human NF-kappaB p52 homodimer-DNA complex at 2.1 A resolution. Embo J 16: 7078–7090.
41. GhoshG, van DuyneG, GhoshS, SiglerPB (1995) Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature 373: 303–310.
42. MullerCW, ReyFA, SodeokaM, VerdineGL, HarrisonSC (1995) Structure of the NF-kappa B p50 homodimer bound to DNA. Nature 373: 311–317.
43. YangZ, ZhengC, HayesJJ (2007) The core histone tail domains contribute to sequence-dependent nucleosome positioning. J Biol Chem 282: 7930–7938.
44. LowaryPT, WidomJ (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276: 19–42.
45. KorberP, BeckerPB (2010) Nucleosome dynamics and epigenetic stability. Essays Biochem 48: 63–74.
46. ShuklaMS, SyedSH, MontelF, Faivre-MoskalenkoC, BednarJ, et al. (2010) Remosomes: RSC generated non-mobilized particles with approximately 180 bp DNA loosely associated with the histone octamer. Proc Natl Acad Sci U S A 107: 1936–1941.
47. ClaudetC, AngelovD, BouvetP, DimitrovS, BednarJ (2005) Histone octamer instability under single molecule experiment conditions. J Biol Chem 280: 19958–19965.
48. KelbauskasL, SunJ, WoodburyN, LohrD (2008) Nucleosomal stability and dynamics vary significantly when viewed by internal versus terminal labels. Biochemistry 47: 9627–9635.
49. ZlatanovaJ, CaiafaP, Van HoldeK (2000) Linker histone binding and displacement: versatile mechanism for transcriptional regulation. FASEB J 14: 1697–1704.
50. CatezF, UedaT, BustinM (2006) Determinants of histone H1 mobility and chromatin binding in living cells. Nat Struct Mol Biol 13: 305–310.
51. HamicheA, SchultzP, RamakrishnanV, OudetP, PrunellA (1996) Linker histone-dependent DNA structure in linear mononucleosomes. J Mol Biol 257: 30–42.
52. SyedSH, Goutte-GattatD, BeckerN, MeyerS, ShuklaMS, et al. (2010) Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome. Proc Natl Acad Sci U S A 107: 9620–9625.
53. AndersonJD, WidomJ (2000) Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J Mol Biol 296: 979–987.
54. LiG, LevitusM, BustamanteC, WidomJ (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 12: 46–53.
55. LorchY, ZhangM, KornbergRD (1999) Histone octamer transfer by a chromatin-remodeling complex. Cell 96: 389–392.
56. ZofallM, PersingerJ, KassabovSR, BartholomewB (2006) Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat Struct Mol Biol 13: 339–346.
57. ZofallM, PersingerJ, BartholomewB (2004) Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2. Mol Cell Biol 24: 10047–10057.
58. MenoniH, GasparuttoD, HamicheA, CadetJ, DimitrovS, et al. (2007) ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A.Bbd nucleosomes. Mol Cell Biol 27: 5949–5956.
59. MenoniH, ShuklaMS, GersonV, DimitrovS, AngelovD (2012) Base excision repair of 8-oxoG in dinucleosomes. Nucleic Acids Res 40: 692–700.
60. EisfeldK, CandauR, TrussM, BeatoM (1997) Binding of NF1 to the MMTV promoter in nucleosomes: influence of rotational phasing, translational positioning and histone H1. Nucleic Acids Res 25: 3733–3742.
61. LeeHL, ArcherTK (1998) Prolonged glucocorticoid exposure dephosphorylates histone H1 and inactivates the MMTV promoter. EMBO J 17: 1454–1466.
62. MisteliT, GunjanA, HockR, BustinM, BrownDT (2000) Dynamic binding of histone H1 to chromatin in living cells. Nature 408: 877–881.
63. Varga-WeiszPD, BeckerPB (1995) Transcription factor-mediated chromatin remodelling: mechanisms and models. FEBS Lett 369: 118–121.
64. GodfreyJE, EickbushTH, MoudrianakisEN (1980) Reversible association of calf thymus histones to form the symmetrical octamer (H2AH2BH3H4)2: a case of a mixed-associating system. Biochemistry 19: 1339–1346.
65. AnnunziatoAT, SchindlerRK, RiggsMG, SealeRL (1982) Association of newly synthesized histones with replicating and nonreplicating regions of chromatin. J Biol Chem 257: 8507–8515.
66. BarskiA, CuddapahS, CuiK, RohTY, SchonesDE, et al. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129: 823–837.
67. KellyTK, MirandaTB, LiangG, BermanBP, LinJC, et al. (2010) H2A.Z maintenance during mitosis reveals nucleosome shifting on mitotically silenced genes. Mol Cell 39: 901–911.
68. JinC, ZangC, WeiG, CuiK, PengW, et al. (2009) H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nat Genet 41: 941–945.
69. LugerK, RechsteinerTJ, RichmondTJ (1999) Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol 119: 1–16.
70. CairnsBR, LorchY, LiY, ZhangM, LacomisL, et al. (1996) RSC, an essential, abundant chromatin-remodeling complex. Cell 87: 1249–1260.
71. KretzschmarM, MeisterernstM, ScheidereitC, LiG, RoederRG (1992) Transcriptional regulation of the HIV-1 promoter by NF-kappa B in vitro. Genes Dev 6: 761–774.
72. MutskovV, GerberD, AngelovD, AusioJ, WorkmanJ, et al. (1998) Persistent interactions of core histone tails with nucleosomal DNA following acetylation and transcription factor binding. Mol Cell Biol 18: 6293–6304.
73. AngelovD, KhochbinS, DimitrovS (1999) UV laser footprinting and protein-DNA crosslinking. Application to chromatin. Methods Mol Biol 119: 481–495.
74. AngelovD, NovakovE, KhochbinS, DimitrovS (1999) Ultraviolet laser footprinting of histone H1(0)-four-way junction DNA complexes. Biochemistry 38: 11333–11339.
75. SpasskyA, AngelovD (1997) Influence of the local helical conformation on the guanine modifications generated from one-electron DNA oxidation. Biochemistry 36: 6571–6576.
76. AngelovD, BeylotB, SpasskyA (2005) Origin of the heterogeneous distribution of the yield of guanyl radical in UV laser photolyzed DNA. Biophys J 88: 2766–2778.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 9
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- A Genome-Wide Systematic Analysis Reveals Different and Predictive Proliferation Expression Signatures of Cancerous vs. Non-Cancerous Cells
- Recent Acquisition of by Baka Pygmies
- The Condition-Dependent Transcriptional Landscape of
- Histone Chaperone NAP1 Mediates Sister Chromatid Resolution by Counteracting Protein Phosphatase 2A