#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Phenotypic and Genetic Consequences of Protein Damage


Although the genome contains all the information necessary for maintenance and perpetuation of life, it is the proteome that repairs, duplicates and expresses the genome and actually performs most cellular functions. Here we reveal strong phenotypes of physiological oxidative proteome damage at the functional and genomic levels. Genome-wide mutations rates and biosynthetic capacity were monitored in real time, in single Escherichia coli cells with identical levels of reactive oxygen species and oxidative DNA damage, but with different levels of irreversible oxidative proteome damage (carbonylation). Increased protein carbonylation correlates with a mutator phenotype, whereas reducing it below wild type level produces an anti-mutator phenotype identifying proteome damage as the leading cause of spontaneous mutations. Proteome oxidation elevates also UV-light induced mutagenesis and impairs cellular biosynthesis. In conclusion, protein damage reduces the efficacy and precision of vital cellular processes resulting in high mutation rates and functional degeneracy akin to cellular aging.


Vyšlo v časopise: Phenotypic and Genetic Consequences of Protein Damage. PLoS Genet 9(9): e32767. doi:10.1371/journal.pgen.1003810
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003810

Souhrn

Although the genome contains all the information necessary for maintenance and perpetuation of life, it is the proteome that repairs, duplicates and expresses the genome and actually performs most cellular functions. Here we reveal strong phenotypes of physiological oxidative proteome damage at the functional and genomic levels. Genome-wide mutations rates and biosynthetic capacity were monitored in real time, in single Escherichia coli cells with identical levels of reactive oxygen species and oxidative DNA damage, but with different levels of irreversible oxidative proteome damage (carbonylation). Increased protein carbonylation correlates with a mutator phenotype, whereas reducing it below wild type level produces an anti-mutator phenotype identifying proteome damage as the leading cause of spontaneous mutations. Proteome oxidation elevates also UV-light induced mutagenesis and impairs cellular biosynthesis. In conclusion, protein damage reduces the efficacy and precision of vital cellular processes resulting in high mutation rates and functional degeneracy akin to cellular aging.


Zdroje

1. NinioJ (1991) Connections between translation, transcription and replication error-rates. Biochimie 73: 1517–1523.

2. OrgelLE (1963) The maintenance of the accuracy of protein synthesis and its relevance to aging. Proc Natl Acad Sci USA 49: 517–521.

3. HopfieldJJ (1974) Kinetic Proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci USA 71: 4135–4139.

4. NinioJ (1975) Kinetic amplification of enzyme discrimination. Biochimie 57: 587–595.

5. DukanS, FarewellA, BallesterosM, TaddeiF, RadmanM, et al. (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci U S A 97: 5746–5749.

6. FredrikssonA, BallesterosM, DukanS, NyströmT (2005) Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. J Bacteriol 187: 4207–4213.

7. FredrikssonA, BallesterosM, PetersonCN, PerssonO, SilhavyTJ, et al. (2007) Decline in ribosomal fidelity contributes to the accumulation and stabilization of the master stress response regulator sigmaS upon carbon starvation. Genes Dev 21: 862–874.

8. HoffmannA, BukauB, KramerG (2010) Structure and function of the molecular chaperone Trigger Factor. Biochim Biophys Acta 1803: 650–661.

9. MaierT, FerbitzL, DeuerlingE, BanN (2005) A cradle for new proteins: trigger factor at the ribosome. Curr Opin Struct Biol 15: 204–212.

10. BuchbergerA, BukauB, SommerT (2010) Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40: 238–252.

11. KurlandCG (1992) Translational accuracy and the fitness of bacteria. Annu Rev Genet 26: 29–50.

12. KriskoA, RadmanM (2010) Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. Proc Natl Acad Sci USA 107: 14373–14377.

13. SlupskaMM, BaikalovC, LloydR, MillerJH (1996) Mutator tRNAs are encoded by the Escherichia coli mutator genes mutA and mutC: A novel pathway for mutagenesis. Proc Acad Nat Sci USA 93: 4380–4385.

14. ElezM, MurrayAW, BiLJ, ZhangXE, MaticI, et al. (2010) Seeing mutations in living cells. Curr Biol 20: 1432–1437.

15. DrakeJW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 88: 7160–7164.

16. NystromT (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24: 1311–1317.

17. AhmedEK, Rogowska-WrzesinskaA, RoepstorffP, BulteauAL, FriguetB (2010) Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 9: 252–272.

18. RutherfordSL, LindquistS (1998) Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342.

19. SchlacherK, CoxMM, WoodgateR, GoodmanMF (2006) RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature 442: 883–887.

20. FriedbergEC, McDanielLD, SchultzRA (2004) The role of endogenous and exogenous DNA damage in mutagenesis. Curr Opin Genet Dev 14: 5–10.

21. DalyMJ, GaidamakovaEK, MatrosovaVY, VasilenkoA, ZhaiM, et al. (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. Plos Biol 5: e92.

22. DalyMJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7: 237–245.

23. KriskoA, LeroyM, RadmanM, MeselsonM (2012) Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proc Natl Acad Sci USA 109: 2354–2357.

24. KohanskiMA, DwyerDJ, HayeteB, LawrenceCA, CollinsJJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130: 797–810.

25. WatsonJ (2013) Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol 3: 120144.

26. OliverCN, AhnBW, MoermanEJ, GoldsteinS, StadtmanER (1987) Age-related changes in oxidized proteins. J Biol Chem 262: 5488–5491.

27. LowryOH, RosebroughNJ, FarrAL, RandallRJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275.

28. StewartEJ, MaddenR, PaulG, TaddeiF (2005) Aging and death in an organism that reproduces by morphologically symmetric division. Plos Biol 3: e45.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#