#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cell-Type Specific Features of Circular RNA Expression


Thousands of loci in the human and mouse genomes give rise to circular RNA transcripts; at many of these loci, the predominant RNA isoform is a circle. Using an improved computational approach for circular RNA identification, we found widespread circular RNA expression in Drosophila melanogaster and estimate that in humans, circular RNA may account for 1% as many molecules as poly(A) RNA. Analysis of data from the ENCODE consortium revealed that the repertoire of genes expressing circular RNA, the ratio of circular to linear transcripts for each gene, and even the pattern of splice isoforms of circular RNAs from each gene were cell-type specific. These results suggest that biogenesis of circular RNA is an integral, conserved, and regulated feature of the gene expression program.


Vyšlo v časopise: Cell-Type Specific Features of Circular RNA Expression. PLoS Genet 9(9): e32767. doi:10.1371/journal.pgen.1003777
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003777

Souhrn

Thousands of loci in the human and mouse genomes give rise to circular RNA transcripts; at many of these loci, the predominant RNA isoform is a circle. Using an improved computational approach for circular RNA identification, we found widespread circular RNA expression in Drosophila melanogaster and estimate that in humans, circular RNA may account for 1% as many molecules as poly(A) RNA. Analysis of data from the ENCODE consortium revealed that the repertoire of genes expressing circular RNA, the ratio of circular to linear transcripts for each gene, and even the pattern of splice isoforms of circular RNAs from each gene were cell-type specific. These results suggest that biogenesis of circular RNA is an integral, conserved, and regulated feature of the gene expression program.


Zdroje

1. SalzmanJ, GawadC, WangPL, LacayoN, BrownPO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PloS one 7: e30733.

2. CapelB, SwainA, NicolisS, HackerA, WalterM, et al. (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73: 1019–1030.

3. HouseleyJM, Garcia-CasadoZ, PascualM, ParicioN, O'DellKM, et al. (2006) Noncanonical RNAs from transcripts of the Drosophila muscleblind gene. The Journal of heredity 97: 253–260.

4. ZaphiropoulosPG (1996) Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proceedings of the National Academy of Sciences of the United States of America 93: 6536–6541.

5. BailleulB (1996) During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles. Nucleic acids research 24: 1015–1019.

6. BurdCE, JeckWR, LiuY, SanoffHK, WangZ, et al. (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS genetics 6: e1001233.

7. JeckWR, SorrentinoJA, WangK, SlevinMK, BurdCE, et al. (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19: 141–157.

8. MemczakS, JensM, ElefsiniotiA, TortiF, KruegerJ, et al. (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441): 333–8.

9. HansenTB, JensenTI, ClausenBH, BramsenJB, FinsenB, et al. (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495: 384–388.

10. VincentHA, DeutscherMP (2006) Substrate recognition and catalysis by the exoribonuclease RNase R. The Journal of biological chemistry 281: 29769–29775.

11. PakJ, ManiarJM, MelloCC, FireA (2012) Protection from feed-forward amplification in an amplified RNAi mechanism. Cell 151: 885–899.

12. DienerTO (1971) Potato spindle tuber virus: a plant virus with properties of a free nucleic acid. 3. Subcellular location of PSTV-RNA and the question of whether virions exist in extracts or in situ. Virology 43: 75–89.

13. VersteegR, van SchaikBD, van BatenburgMF, RoosM, MonajemiR, et al. (2003) The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome research 13: 1998–2004.

14. KingAN, BeerDG, ChristensenPJ, SimpsonRU, RamnathN (2010) The vitamin D/CYP24A1 story in cancer. Anti-cancer agents in medicinal chemistry 10: 213–224.

15. HorvathHC, LakatosP, KosaJP, BacsiK, BorkaK, et al. (2010) The candidate oncogene CYP24A1: A potential biomarker for colorectal tumorigenesis. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 58: 277–285.

16. HorvathE, LakatosP, BallaB, KosaJP, TobiasB, et al. (2012) Marked Increase of CYP24A1 mRNA Level in Hepatocellular Carcinoma Cell Lines Following Vitamin D Administration. Anticancer research 32: 4791–4796.

17. ChenG, KimSH, KingAN, ZhaoL, SimpsonRU, et al. (2011) CYP24A1 is an independent prognostic marker of survival in patients with lung adenocarcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 17: 817–826.

18. BallaB, KosaJP, TobiasB, HalaszlakiC, TakacsI, et al. (2011) Marked increase in CYP24A1 gene expression in human papillary thyroid cancer. Thyroid : official journal of the American Thyroid Association 21: 459–460.

19. AndersonMG, NakaneM, RuanX, KroegerPE, Wu-WongJR (2006) Expression of VDR and CYP24A1 mRNA in human tumors. Cancer chemotherapy and pharmacology 57: 234–240.

20. CeramiE, GaoJ, DogrusozU, GrossBE, SumerSO, et al. (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer discovery 2: 401–404.

21. KroeldrupL, KjaergaardS, KirchhoffM, KockK, Brasch-AndersenC, et al. (2012) Duplication of 7q36.3 encompassing the Sonic Hedgehog (SHH) gene is associated with congenital muscular hypertrophy. European journal of medical genetics 55: 557–560.

22. FimiaGM, CorazzariM, AntonioliM, PiacentiniM (2012) Ambra1 at the crossroad between autophagy and cell death. Oncogene 32: 3311–8.

23. FimiaGM, StoykovaA, RomagnoliA, GiuntaL, Di BartolomeoS, et al. (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447: 1121–1125.

24. GraveleyBR, BrooksAN, CarlsonJW, DuffMO, LandolinJM, et al. (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471: 473–479.

25. HsuMT, Coca-PradosM (1979) Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280: 339–340.

26. DongLM, UlrichCM, HsuL, DugganDJ, BenitezDS, et al. (2009) Vitamin D related genes, CYP24A1 and CYP27B1, and colon cancer risk. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 18: 2540–2548.

27. FangZ, XiongY, ZhangC, LiJ, LiuL, et al. (2010) Coexistence of copy number increases of ZNF217 and CYP24A1 in colorectal cancers in a Chinese population. Oncology letters 1: 925–930.

28. HobausJ, FetahuIS, KhorchideM, ManhardtT, KallayE (2012) Epigenetic regulation of the 1,25-dihydroxyvitamin D(3) 24-hydroxylase (CYP24A1) in colon cancer cells. The Journal of steroid biochemistry and molecular biology 136: 296–299.

29. HolickCN, StanfordJL, KwonEM, OstranderEA, NejentsevS, et al. (2007) Comprehensive association analysis of the vitamin D pathway genes, VDR, CYP27B1, and CYP24A1, in prostate cancer. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 16: 1990–1999.

30. HorvathHC, KhabirZ, NittkeT, GruberS, SpeerG, et al. (2010) CYP24A1 splice variants–implications for the antitumorigenic actions of 1,25-(OH)2D3 in colorectal cancer. The Journal of steroid biochemistry and molecular biology 121: 76–79.

31. LopesN, SousaB, MartinsD, GomesM, VieiraD, et al. (2010) Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions. BMC cancer 10: 483.

32. ZeljicK, SupicG, Stamenkovic RadakM, JovicN, KozomaraR, et al. (2012) Vitamin D receptor, CYP27B1 and CYP24A1 genes polymorphisms association with oral cancer risk and survival. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 41: 779–787.

33. ChenCY, SarnowP (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268: 415–417.

34. ChenCY, SarnowP (1998) Internal ribosome entry sites tests with circular mRNAs. Methods in molecular biology 77: 355–363.

35. LangmeadB, SalzbergSL (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357–359.

36. BurnettWV (1997) Northern blotting of RNA denatured in glyoxal without buffer recirculation. BioTechniques 22: 668–671.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#