#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Growth factor independent-1 Maintains Notch1-Dependent Transcriptional Programming of Lymphoid Precursors


Growth factor independent 1 (Gfi1) is a transcriptional repressor originally identified as a gene activated in T-cell leukemias induced by Moloney-murine-leukemia virus infection. Notch1 is a transmembrane receptor that is frequently mutated in human T-cell acute lymphoblastic leukemia (T-ALL). Gfi1 is an important factor in the initiation and maintenance of lymphoid leukemias and its deficiency significantly impedes Notch dependent initiation of T-ALL in animal models. Here, we show that immature hematopoietic cells require Gfi1 to competently integrate Notch-activated signaling. Notch1 activation coupled with Gfi1 deficiency early in T-lineage specification leads to a dramatic loss of T-cells, whereas activation in later stages leaves development unaffected. In Gfi1 deficient multipotent precursors, Notch activation induces lethality and is cell autonomous. Further, without Gfi1, multipotent progenitors do not maintain Notch1-activated global expression profiles typical for T-lineage precursors. In agreement with this, we find that both lymphoid-primed multipotent progenitors (LMPP) and early T lineage progenitors (ETP) do not properly form or function in Gfi1−/− mice. These defects correlate with an inability of Gfi1−/− progenitors to activate lymphoid genes, including IL7R, Rag1, Flt3 and Notch1. Our data indicate that Gfi1 is required for hematopoietic precursors to withstand Notch1 activation and to maintain Notch1 dependent transcriptional programming to determine early T-lymphoid lineage identity.


Vyšlo v časopise: Growth factor independent-1 Maintains Notch1-Dependent Transcriptional Programming of Lymphoid Precursors. PLoS Genet 9(9): e32767. doi:10.1371/journal.pgen.1003713
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003713

Souhrn

Growth factor independent 1 (Gfi1) is a transcriptional repressor originally identified as a gene activated in T-cell leukemias induced by Moloney-murine-leukemia virus infection. Notch1 is a transmembrane receptor that is frequently mutated in human T-cell acute lymphoblastic leukemia (T-ALL). Gfi1 is an important factor in the initiation and maintenance of lymphoid leukemias and its deficiency significantly impedes Notch dependent initiation of T-ALL in animal models. Here, we show that immature hematopoietic cells require Gfi1 to competently integrate Notch-activated signaling. Notch1 activation coupled with Gfi1 deficiency early in T-lineage specification leads to a dramatic loss of T-cells, whereas activation in later stages leaves development unaffected. In Gfi1 deficient multipotent precursors, Notch activation induces lethality and is cell autonomous. Further, without Gfi1, multipotent progenitors do not maintain Notch1-activated global expression profiles typical for T-lineage precursors. In agreement with this, we find that both lymphoid-primed multipotent progenitors (LMPP) and early T lineage progenitors (ETP) do not properly form or function in Gfi1−/− mice. These defects correlate with an inability of Gfi1−/− progenitors to activate lymphoid genes, including IL7R, Rag1, Flt3 and Notch1. Our data indicate that Gfi1 is required for hematopoietic precursors to withstand Notch1 activation and to maintain Notch1 dependent transcriptional programming to determine early T-lymphoid lineage identity.


Zdroje

1. GilksCB, BearSE, GrimesHL, TsichlisPN (1993) Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein. Mol Cell Biol 13: 1759–1768.

2. UrenAG, KoolJ, MatentzogluK, de RidderJ, MattisonJ, et al. (2008) Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133: 727–741.

3. GrimesHL, ChanTO, Zweidler-McKayPA, TongB, TsichlisPN (1996) The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal. Mol Cell Biol 16: 6263–6272.

4. Zweidler-MckayPA, GrimesHL, FlubacherMM, TsichlisPN (1996) Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. Mol Cell Biol 16: 4024–4034.

5. ZarebskiA, VeluCS, BaktulaAM, BourdeauT, HormanSR, et al. (2008) Mutations in growth factor independent-1 associated with human neutropenia block murine granulopoiesis through colony stimulating factor-1. Immunity 28: 370–380.

6. KarsunkyH, ZengH, SchmidtT, ZevnikB, KlugeR, et al. (2002) Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat Genet 30: 295–300.

7. HockH, HamblenMJ, RookeHM, SchindlerJW, SalequeS, et al. (2004) Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431: 1002–1007.

8. ZengH, YucelR, KosanC, Klein-HitpassL, MoroyT (2004) Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J 23: 4116–4125.

9. YucelR, KarsunkyH, Klein-HitpassL, MoroyT (2003) The transcriptional repressor Gfi1 affects development of early, uncommitted c-Kit+ T cell progenitors and CD4/CD8 lineage decision in the thymus. J Exp Med 197: 831–844.

10. ZhuJ, JankovicD, GrinbergA, GuoL, PaulWE (2006) Gfi-1 plays an important role in IL-2-mediated Th2 cell expansion. Proc Natl Acad Sci U S A 103: 18214–18219.

11. RadtkeF, WilsonA, StarkG, BauerM, van MeerwijkJ, et al. (1999) Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10: 547–558.

12. HadlandBK, ManleyNR, SuD, LongmoreGD, MooreCL, et al. (2001) Gamma -secretase inhibitors repress thymocyte development. Proc Natl Acad Sci U S A 98: 7487–7491.

13. WilsonA, MacDonaldHR, RadtkeF (2001) Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J Exp Med 194: 1003–1012.

14. HanH, TanigakiK, YamamotoN, KurodaK, YoshimotoM, et al. (2002) Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 14: 637–645.

15. MaillardI, WengAP, CarpenterAC, RodriguezCG, SaiH, et al. (2004) Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104: 1696–1702.

16. AndersonG, PongraczJ, ParnellS, JenkinsonEJ (2001) Notch ligand-bearing thymic epithelial cells initiate and sustain Notch signaling in thymocytes independently of T cell receptor signaling. Eur J Immunol 31: 3349–3354.

17. SchmittTM, Zuniga-PfluckerJC (2002) Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17: 749–756.

18. LeharSM, DooleyJ, FarrAG, BevanMJ (2005) Notch ligands Delta 1 and Jagged1 transmit distinct signals to T-cell precursors. Blood 105: 1440–1447.

19. KopanR, SchroeterEH, WeintraubH, NyeJS (1996) Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc Natl Acad Sci U S A 93: 1683–1688.

20. SchroeterEH, KisslingerJA, KopanR (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393: 382–386.

21. StruhlG, AdachiA (1998) Nuclear access and action of notch in vivo. Cell 93: 649–660.

22. RothenbergEV, ZhangJ, LiL (2010) Multilayered specification of the T-cell lineage fate. Immunol Rev 238: 150–168.

23. MaillardI, KochU, DumortierA, ShestovaO, XuL, et al. (2008) Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2: 356–366.

24. ChiangMY, ShestovaO, XuL, AsterJC, PearWS (2012) Divergent effects of supraphysiological Notch signals on leukemia stem cells and hematopoietic stem cells. Blood 121 (6) 905–17.

25. KlinakisA, LobryC, Abdel-WahabO, OhP, HaenoH, et al. (2011) A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 473: 230–233.

26. SambandamA, MaillardI, ZediakVP, XuL, GersteinRM, et al. (2005) Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol 6: 663–670.

27. PuiCH (2000) Acute lymphoblastic leukemia in children. Curr Opin Oncol 12: 3–12.

28. EllisenLW, BirdJ, WestDC, SorengAL, ReynoldsTC, et al. (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649–661.

29. WengAP, FerrandoAA, LeeW, MorrisJPt, SilvermanLB, et al. (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269–271.

30. SulisML, OW, ToselloV, PallippukamS, PalomeroT, et al. (2007) A Novel Class of Acitvating Mutations in NOTCH1 in T-ALL. Blood 110: 213a.

31. ThompsonBJ, BuonamiciS, SulisML, PalomeroT, VilimasT, et al. (2007) The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 204: 1825–1835.

32. De KeersmaeckerK, AtakZK, LiN, VicenteC, PatchettS, et al. (2013) Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet 45: 186–190.

33. MaleckiMJ, Sanchez-IrizarryC, MitchellJL, HistenG, XuML, et al. (2006) Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol 26: 4642–4651.

34. ZhangJ, DingL, HolmfeldtL, WuG, HeatleySL, et al. (2012) The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481: 157–163.

35. ZornigM, SchmidtT, KarsunkyH, GrzeschiczekA, MoroyT (1996) Zinc finger protein GFI-1 cooperates with myc and pim-1 in T-cell lymphomagenesis by reducing the requirements for IL-2. Oncogene 12: 1789–1801.

36. SchmidtT, KarsunkyH, GauE, ZevnikB, ElsasserHP, et al. (1998) Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis. Oncogene 17: 2661–2667.

37. KhandanpourC, PhelanJD, VassenL, SchutteJ, ChenR, et al. (2013) Growth factor independence 1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia. Cancer Cell 23: 200–214.

38. LeePP, FitzpatrickDR, BeardC, JessupHK, LeharS, et al. (2001) A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15: 763–774.

39. MurtaughLC, StangerBZ, KwanKM, MeltonDA (2003) Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci U S A 100: 14920–14925.

40. RobeyE, ChangD, ItanoA, CadoD, AlexanderH, et al. (1996) An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87: 483–492.

41. AllmanD, KarnellFG, PuntJA, BakkourS, XuL, et al. (2001) Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J Exp Med 194: 99–106.

42. LiX, GounariF, ProtopopovA, KhazaieK, von BoehmerH (2008) Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1. J Exp Med 205: 2851–2861.

43. TanigakiK, TsujiM, YamamotoN, HanH, TsukadaJ, et al. (2004) Regulation of alphabeta/gammadelta T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20: 611–622.

44. WolferA, BakkerT, WilsonA, NicolasM, IoannidisV, et al. (2001) Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8T cell development. Nat Immunol 2: 235–241.

45. ZhangDJ, WangQ, WeiJ, BaimukanovaG, BuchholzF, et al. (2005) Selective expression of the Cre recombinase in late-stage thymocytes using the distal promoter of the Lck gene. J Immunol 174: 6725–6731.

46. HormanSR, VeluCS, ChaubeyA, BourdeauT, ZhuJ, et al. (2009) Gfi1 integrates progenitor versus granulocytic transcriptional programming. Blood 113: 5466–5475.

47. EspinosaL, CathelinS, D'AltriT, TrimarchiT, StatnikovA, et al. (2010) The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia. Cancer Cell 18: 268–281.

48. ZhangJA, MortazaviA, WilliamsBA, WoldBJ, RothenbergEV (2012) Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell 149: 467–482.

49. LucS, LuisTC, BoukarabilaH, MacaulayIC, Buza-VidasN, et al. (2012) The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat Immunol 13 (4) 412–9.

50. SubramanianA, TamayoP, MoothaVK, MukherjeeS, EbertBL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.

51. ChenJ, BardesEE, AronowBJ, JeggaAG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37: W305–311.

52. LaiAY, KondoM (2007) Identification of a bone marrow precursor of the earliest thymocytes in adult mouse. Proc Natl Acad Sci U S A 104: 6311–6316.

53. ZhuangD, QiuY, KoganSC, DongF (2006) Increased CCAAT enhancer-binding protein epsilon (C/EBPepsilon) expression and premature apoptosis in myeloid cells expressing Gfi-1 N382S mutant associated with severe congenital neutropenia. J Biol Chem 281: 10745–10751.

54. Ordonez-RuedaD, JonssonF, MancardiDA, ZhaoW, MalzacA, et al. (2012) A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia. Eur J Immunol 42: 2395–2408.

55. YucelR, KosanC, HeydF, MoroyT (2004) Gfi1:green fluorescent protein knock-in mutant reveals differential expression and autoregulation of the growth factor independence 1 (Gfi1) gene during lymphocyte development. J Biol Chem 279: 40906–40917.

56. PargmannD, YucelR, KosanC, SabaI, Klein-HitpassL, et al. (2007) Differential impact of the transcriptional repressor Gfi1 on mature CD4+ and CD8+ T lymphocyte function. Eur J Immunol 37: 3551–3563.

57. SchmidtT, KarsunkyH, RodelB, ZevnikB, ElsasserHP, et al. (1998) Evidence implicating Gfi-1 and Pim-1 in pre-T-cell differentiation steps associated with beta-selection. EMBO J 17: 5349–5359.

58. TaghonTN, DavidES, Zuniga-PfluckerJC, RothenbergEV (2005) Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev 19: 965–978.

59. YuiMA, FengN, RothenbergEV (2010) Fine-scale staging of T cell lineage commitment in adult mouse thymus. J Immunol 185: 284–293.

60. PalomeroT, LimWK, OdomDT, SulisML, RealPJ, et al. (2006) NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A 103: 18261–18266.

61. WengAP, MillhollandJM, Yashiro-OhtaniY, ArcangeliML, LauA, et al. (2006) c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20: 2096–2109.

62. SharmaVM, CalvoJA, DraheimKM, CunninghamLA, HermanceN, et al. (2006) Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol Cell Biol 26: 8022–8031.

63. WendorffAA, KochU, WunderlichFT, WirthS, DubeyC, et al. (2010) Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. Immunity 33: 671–684.

64. MasieroM, MinuzzoS, PuscedduI, MoserleL, PersanoL, et al. (2011) Notch3-mediated regulation of MKP-1 levels promotes survival of T acute lymphoblastic leukemia cells. Leukemia 25: 588–598.

65. SulimanS, TanJ, XuK, KousisPC, KowalskiPE, et al. (2011) Notch3 is dispensable for thymocyte beta-selection and Notch1-induced T cell leukemogenesis. PLoS One 6: e24937.

66. MedyoufH, GusscottS, WangH, TsengJC, WaiC, et al. (2011) High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. J Exp Med 208: 1809–1822.

67. WeberBN, ChiAW, ChavezA, Yashiro-OhtaniY, YangQ, et al. (2011) A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476: 63–68.

68. GermarK, DoseM, KonstantinouT, ZhangJ, WangH, et al. (2011) T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. Proc Natl Acad Sci U S A 108: 20060–20065.

69. LiP, BurkeS, WangJ, ChenX, OrtizM, et al. (2010) Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 329: 85–89.

70. GrimesHL, GilksCB, ChanTO, PorterS, TsichlisPN (1996) The Gfi-1 protooncoprotein represses Bax expression and inhibits T-cell death. Proc Natl Acad Sci U S A 93: 14569–14573.

71. ZohrenF, SouroullasGP, LuoM, GerdemannU, ImperatoMR, et al. (2012) The transcription factor Lyl-1 regulates lymphoid specification and the maintenance of early T lineage progenitors. Nat Immunol 13: 761–769.

72. SpoonerCJ, ChengJX, PujadasE, LasloP, SinghH (2009) A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates. Immunity 31: 576–586.

73. FrancoCB, Scripture-AdamsDD, ProektI, TaghonT, WeissAH, et al. (2006) Notch/Delta signaling constrains reengineering of pro-T cells by PU.1. Proc Natl Acad Sci U S A 103: 11993–11998.

74. LasloP, SpoonerCJ, WarmflashA, LanckiDW, LeeHJ, et al. (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126: 755–766.

75. DoanLL, KitayMK, YuQ, SingerA, HerblotS, et al. (2003) Growth factor independence-1B expression leads to defects in T cell activation, IL-7 receptor alpha expression, and T cell lineage commitment. J Immunol 170: 2356–2366.

76. HockH, HamblenMJ, RookeHM, TraverD, BronsonRT, et al. (2003) Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18: 109–120.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#