Dynamics of DNA Methylation in Recent Human and Great Ape Evolution
DNA methylation is an epigenetic modification involved in regulatory processes such as cell differentiation during development, X-chromosome inactivation, genomic imprinting and susceptibility to complex disease. However, the dynamics of DNA methylation changes between humans and their closest relatives are still poorly understood. We performed a comparative analysis of CpG methylation patterns between 9 humans and 23 primate samples including all species of great apes (chimpanzee, bonobo, gorilla and orangutan) using Illumina Methylation450 bead arrays. Our analysis identified ∼800 genes with significantly altered methylation patterns among the great apes, including ∼170 genes with a methylation pattern unique to human. Some of these are known to be involved in developmental and neurological features, suggesting that epigenetic changes have been frequent during recent human and primate evolution. We identified a significant positive relationship between the rate of coding variation and alterations of methylation at the promoter level, indicative of co-occurrence between evolution of protein sequence and gene regulation. In contrast, and supporting the idea that many phenotypic differences between humans and great apes are not due to amino acid differences, our analysis also identified 184 genes that are perfectly conserved at protein level between human and chimpanzee, yet show significant epigenetic differences between these two species. We conclude that epigenetic alterations are an important force during primate evolution and have been under-explored in evolutionary comparative genomics.
Vyšlo v časopise:
Dynamics of DNA Methylation in Recent Human and Great Ape Evolution. PLoS Genet 9(9): e32767. doi:10.1371/journal.pgen.1003763
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003763
Souhrn
DNA methylation is an epigenetic modification involved in regulatory processes such as cell differentiation during development, X-chromosome inactivation, genomic imprinting and susceptibility to complex disease. However, the dynamics of DNA methylation changes between humans and their closest relatives are still poorly understood. We performed a comparative analysis of CpG methylation patterns between 9 humans and 23 primate samples including all species of great apes (chimpanzee, bonobo, gorilla and orangutan) using Illumina Methylation450 bead arrays. Our analysis identified ∼800 genes with significantly altered methylation patterns among the great apes, including ∼170 genes with a methylation pattern unique to human. Some of these are known to be involved in developmental and neurological features, suggesting that epigenetic changes have been frequent during recent human and primate evolution. We identified a significant positive relationship between the rate of coding variation and alterations of methylation at the promoter level, indicative of co-occurrence between evolution of protein sequence and gene regulation. In contrast, and supporting the idea that many phenotypic differences between humans and great apes are not due to amino acid differences, our analysis also identified 184 genes that are perfectly conserved at protein level between human and chimpanzee, yet show significant epigenetic differences between these two species. We conclude that epigenetic alterations are an important force during primate evolution and have been under-explored in evolutionary comparative genomics.
Zdroje
1. The Chimpanzee Sequencing AC (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437: 69–87 doi:10.1038/nature04072
2. ScallyA, DutheilJY, HillierLW, JordanGE, GoodheadI, et al. (2012) Insights into hominid evolution from the gorilla genome sequence. Nature 483: 169–175 doi:10.1038/nature10842
3. PrüferK, MunchK, HellmannI, AkagiK, MillerJR, et al. (2012) The bonobo genome compared with the chimpanzee and human genomes. Nature 486: 527–31 doi:10.1038/nature11128
4. LockeDP, HillierLW, WarrenWC, WorleyKC, Nazareth LV, et al. (2011) Comparative and demographic analysis of orang-utan genomes. Nature 469: 529–533 doi:10.1038/nature09687
5. CainCE, BlekhmanR, MarioniJC, GiladY (2011) Gene expression differences among primates are associated with changes in a histone epigenetic modification. Genetics 187: 1225–1234 doi:10.1534/genetics.110.126177
6. MartinD, SingerM, DhahbiJ, MaoG (2011) Phyloepigenomic comparison of great apes reveals a correlation between somatic and germline methylation states. Genome 2049–2057 doi:10.1101/gr.122721.111.21
7. MolaroA, HodgesE, FangF, SongQ, McCombieWR, et al. (2011) Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell 146: 1029–1041 doi:10.1016/j.cell.2011.08.016
8. NumataS, YeT, HydeTM, Guitart-NavarroX, TaoR, et al. (2012) DNA methylation signatures in development and aging of the human prefrontal cortex. American journal of human genetics 90: 260–272 doi:10.1016/j.ajhg.2011.12.020
9. Pai Aa, BellJT, MarioniJC, PritchardJK, GiladY (2011) A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues. PLoS genetics 7: e1001316 doi:10.1371/journal.pgen.1001316
10. SadoT, FennerMH, TanSS, TamP, ShiodaT, et al. (2000) X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Developmental biology 225: 294–303 doi:10.1006/dbio.2000.9823
11. ReikW (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447: 425–432 doi:10.1038/nature05918
12. Irizarry Ra, Ladd-AcostaC, WenB, WuZ, MontanoC, et al. (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature genetics 41: 178–186 doi:10.1038/ng.298
13. SharpAJ, StathakiE, MigliavaccaE, BrahmacharyM, MontgomerySB, et al. (2011) DNA methylation profiles of human active and inactive X chromosomes. Genome research 21: 1592–1600 doi:10.1101/gr.112680.110
14. JonesPA, TakaiD (2001) The role of DNA methylation in mammalian epigenetics. Science (New York, NY) 293: 1068–1070 doi:10.1126/science.1063852
15. LaurentL, WongE, LiG, HuynhT, TsirigosA, et al. (2010) Dynamic changes in the human methylome during differentiation. Genome research 20: 320–331 doi:10.1101/gr.101907.109
16. ListerR, PelizzolaM, DowenRH, HawkinsRD, HonG, et al. (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462: 315–322 doi:10.1038/nature08514
17. ShuklaS, KavakE, GregoryM, ImashimizuM, ShutinoskiB, et al. (2011) CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479: 74–79 doi:10.1038/nature10442
18. BellJT, Pai Aa, PickrellJK, GaffneyDJ, Pique-RegiR, et al. (2011) DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome biology 12: R10 doi:10.1186/gb-2011-12-1-r10
19. GertzJ, VarleyKE, ReddyTE, BowlingKM, PauliF, et al. (2011) Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLoS genetics 7: e1002228 doi:10.1371/journal.pgen.1002228
20. GibbsJR, Van der BrugMP, HernandezDG, TraynorBJ, NallsMA, et al. (2010) Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS genetics 6: e1000952 doi:10.1371/journal.pgen.1000952
21. BrunnerAL, JohnsonDS, KimSW, ValouevA, ReddyTE, et al. (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome research 19: 1044–1056 doi:10.1101/gr.088773.108
22. MeissnerA, MikkelsenTS, GuH, WernigM, HannaJ, et al. (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454: 766–770 doi:10.1038/nature07107
23. BreitlingLP, YangR, KornB, BurwinkelB, BrennerH (2011) Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. American journal of human genetics 88: 450–457 doi:10.1016/j.ajhg.2011.03.003
24. GordonL, JooJE, PowellJE, OllikainenM, NovakovicB, et al. (2012) Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Research 22: 1395–406 doi:10.1101/gr.136598.111
25. ZengJ, KonopkaG, HuntBG, PreussTM, GeschwindD, et al. (2012) Divergent Whole-Genome Methylation Maps of Human and Chimpanzee Brains Reveal Epigenetic Basis of Human Regulatory Evolution. The American Journal of Human Genetics 91: 455–465 doi:10.1016/j.ajhg.2012.07.024
26. Prado-MartinezJ, SudmantPH, KiddJM, LiH, KelleyJL, et al. (2013) Great ape genetic diversity and population history. Nature 499: 471–475 doi:10.1038/nature12228
27. ReiniusLE, AcevedoN, JoerinkM, PershagenG, DahlénS-E, et al. (2012) Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PloS one 7: e41361 doi:10.1371/journal.pone.0041361
28. PatenB, HerreroJ, BealK, FitzgeraldS, BirneyE (2008) Enredo and Pecan: genome-wide mammalian consistency-based multiple alignment with paralogs. Genome research 18: 1814–1828 doi:10.1101/gr.076554.108
29. PatenB, HerreroJ, FitzgeraldS, BealK, FlicekP, et al. (2008) Genome-wide nucleotide-level mammalian ancestor reconstruction. Genome research 18: 1829–1843 doi:10.1101/gr.076521.108
30. BecquetC, PattersonN, StoneAC, PrzeworskiM, ReichD (2007) Genetic structure of chimpanzee populations. PLoS genetics 3: e66 doi:10.1371/journal.pgen.0030066
31. McLeanCY, BristorD, HillerM, ClarkeSL, SchaarBT, et al. (2010) GREAT improves functional interpretation of cis-regulatory regions. Nature biotechnology 28: 495–501 doi:10.1038/nbt.1630
32. KuivaniemiH, TrompG, ProckopDJ (1997) Mutations in fibrillar collagens (types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. Human mutation 9: 300–315 doi:;10.1002/(SICI)1098-1004(1997)9:4<300::AID-HUMU2>3.0.CO;2-9
33. DoiA, ParkI-H, WenB, MurakamiP, AryeeMJ, et al. (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature genetics 41: 1350–1353 doi:10.1038/ng.471
34. StadlerMB, MurrR, BurgerL, IvanekR, LienertF, et al. (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480: 490–495 doi:10.1038/nature10716
35. PayerB, LeeJT (2008) X chromosome dosage compensation: how mammals keep the balance. Annual review of genetics 42: 733–772 doi:10.1146/annurev.genet.42.110807.091711
36. LyonMF (1961) Gene Action in the X-chromosome of the Mouse (Mus musculus L.). Nature 190: 372–373 doi:10.1038/190372a0
37. Dal ZottoL, QuaderiNa, ElliottR, LingerfelterPa, CarrelL, et al. (1998) The mouse Mid1 gene: implications for the pathogenesis of Opitz syndrome and the evolution of the mammalian pseudoautosomal region. Human molecular genetics 7: 489–499 doi:10.1093/hmg/7.3.489
38. BrawandD, SoumillonM, NecsuleaA, JulienP, CsárdiG, et al. (2011) The evolution of gene expression levels in mammalian organs. Nature 478: 343–348 doi:10.1038/nature10532
39. JohnstonCM, LovellFL, Leongamornlert Da, StrangerBE, DermitzakisET, et al. (2008) Large-scale population study of human cell lines indicates that dosage compensation is virtually complete. PLoS genetics 4: e9 doi:10.1371/journal.pgen.0040009
40. RiceJC, FutscherBW (2000) Transcriptional repression of BRCA1 by aberrant cytosine methylation, histone hypoacetylation and chromatin condensation of the BRCA1 promoter. Nucleic acids research 28: 3233–3239 doi:10.1093/nar/28.17.3233
41. EdenE, NavonR, SteinfeldI, LipsonD, YakhiniZ (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10: 48 doi:10.1186/1471-2105-10-48
42. EdenE, LipsonD, YogevS, YakhiniZ (2007) Discovering Motifs in Ranked Lists of DNA Sequences. PLoS Computational Biology 3: e39 doi:10.1371/journal.pcbi.0030039
43. O'BlenessM, SearlesVB, VarkiA, GagneuxP, SikelaJM (2012) Evolution of genetic and genomic features unique to the human lineage. Nature reviews Genetics 13: 853–866 doi:10.1038/nrg3336
44. WhiteheadA, CrawfordDL (2006) Neutral and adaptive variation in gene expression. Proceedings of the National Academy of Sciences of the United States of America 103: 5425–5430 doi:10.1073/pnas.0507648103
45. GiladY, OshlackA, Rifkin Sa (2006) Natural selection on gene expression. Trends in genetics: TIG 22: 456–461 doi:10.1016/j.tig.2006.06.002
46. NielsenR, BustamanteC, ClarkAG, GlanowskiS, SacktonTB, et al. (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS biology 3: e170 doi:10.1371/journal.pbio.0030170
47. SudmantPH, KitzmanJO, AntonacciF, AlkanC, MaligM, et al. (2010) Diversity of human copy number variation and multicopy genes. Science (New York, NY) 330: 641–646 doi:10.1126/science.1197005
48. Marques-BonetT, KiddJM, VenturaM, Graves Ta, ChengZ, et al. (2009) A burst of segmental duplications in the genome of the African great ape ancestor. Nature 457: 877–881 doi:10.1038/nature07744
49. DumasL, KimYH, Karimpour-FardA, CoxM, HopkinsJ, et al. (2007) Gene copy number variation spanning 60 million years of human and primate evolution. Genome research 17: 1266–1277 doi:10.1101/gr.6557307
50. KosiolC, VinarT, Da FonsecaRR, HubiszMJ, BustamanteCD, et al. (2008) Patterns of positive selection in six Mammalian genomes. PLoS genetics 4: e1000144 doi:10.1371/journal.pgen.1000144
51. KingMC, WilsonAC (1975) Evolution at two levels in humans and chimpanzees. Science 188: 107–116 doi:10.1126/science.1090005
52. SpoorF, GarlandT, KrovitzG, RyanTM, SilcoxMT, et al. (2007) The primate semicircular canal system and locomotion. Proceedings of the National Academy of Sciences of the United States of America 104: 10808–10812 doi:10.1073/pnas.0704250104
53. BurrowsAM (2008) The facial expression musculature in primates and its evolutionary significance. Bio Essays: news and reviews in molecular, cellular and developmental biology 30: 212–225 doi:10.1002/bies.20719
54. DixonJR, SelvarajS, YueF, KimA, LiY, et al. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376–380 doi:10.1038/nature11082
55. WardLD, KellisM (2012) Evidence of Abundant Purifying Selection in Humans for Recently Acquired Regulatory Functions. Science 337: 1675–8 doi:10.1126/science.1225057
56. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 25: 1754–1760 doi:10.1093/bioinformatics/btp324
57. SherryST, WardM, SirotkinK (1999) dbSNP — Database for Single Nucleotide Polymorphisms and Other Classes of Minor Genetic Variation dbSNP — Database for Single Nucleotide Polymorphisms and Other Classes of Minor Genetic Variation. 677–679 doi:10.1101/gr.9.8.677
58. DuP, Kibbe Wa, LinSM (2008) lumi: a pipeline for processing Illumina microarray. Bioinformatics (Oxford, England) 24: 1547–1548 doi:10.1093/bioinformatics/btn224
59. TeschendorffAE, MarabitaF, LechnerM, BartlettT, TegnerJ, et al. (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics (Oxford, England) 29: 189–196 doi:10.1093/bioinformatics/bts680
60. ParadisE, ClaudeJ, StrimmerK (2004) APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20: 289–290 doi:10.1093/bioinformatics/btg412
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 9
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- A Genome-Wide Systematic Analysis Reveals Different and Predictive Proliferation Expression Signatures of Cancerous vs. Non-Cancerous Cells
- Recent Acquisition of by Baka Pygmies
- The Condition-Dependent Transcriptional Landscape of
- Histone Chaperone NAP1 Mediates Sister Chromatid Resolution by Counteracting Protein Phosphatase 2A