#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Common Variants in Left/Right Asymmetry Genes and Pathways Are Associated with Relative Hand Skill


Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68×10−9), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR≤5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR≤5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development.


Vyšlo v časopise: Common Variants in Left/Right Asymmetry Genes and Pathways Are Associated with Relative Hand Skill. PLoS Genet 9(9): e32767. doi:10.1371/journal.pgen.1003751
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003751

Souhrn

Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68×10−9), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR≤5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR≤5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development.


Zdroje

1. Corballis MC (1993) The lopsided ape: Evolution of the generative mind: Oxford University Press, USA.

2. MarchantLF, McGrewWC (1998) Human handedness: an ethological perspective. Human Evolution 13: 221–228.

3. RaymondM, PontierD (2004) Is there geographical variation in human handedness? Laterality 9: 35–51.

4. McgrewWC, MarchantLF (1997) On the other hand: Current issues in and meta-analysis of the behavioral laterality of hand function in nonhuman primates. Yearbook of Physical Anthropology, Vol 40 - 1997 40: 201–232.

5. CashmoreL, UominiN, ChapelainA (2008) The evolution of handedness in humans and great apes: a review and current issues. Journal of Anthropological Sciences 86: 7–35.

6. UominiNT (2009) The prehistory of handedness: archaeological data and comparative ethology. J Hum Evol 57: 411–419.

7. FrayerDW, LozanoM, de CastroJMB, CarbonellE, ArsuagaJL, et al. (2012) More than 500,000 years of right-handedness in Europe. Laterality 17: 51–69.

8. FrayerDW, FioreI, Lalueza-FoxC, RadovcicJ, BondioliL (2010) Right handed Neandertals: Vindija and beyond. Journal of Anthropological Sciences 88: 113–127.

9. FoxCL, FrayerDW (1997) Non-dietary marks in the anterior dentition of the Krapina neanderthals. International Journal of Osteoarchaeology 7: 133–149.

10. LozanoM, MosqueraM, de CastroJMB, ArsuagaJL, CarbonellE (2009) Right handedness of Homo heidelbergensis from Sima de los Huesos (Atapuerca, Spain) 500,000 years ago. Evolution and Human Behavior 30: 369–376.

11. AmuntsK, SchlaugG, SchleicherA, SteinmetzH, DabringhausA, et al. (1996) Asymmetry in the human motor cortex and handedness. Neuroimage 4: 216–222.

12. DassonvilleP, ZhuXH, UurbilK, KimSG, AsheJ (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci U S A 94: 14015–14018.

13. HervePY, CrivelloF, PercheyG, MazoyerB, Tzourio-MazoyerN (2006) Handedness and cerebral anatomical asymmetries in young adult males. Neuroimage 29: 1066–1079.

14. KnechtS, DragerB, DeppeM, BobeL, LohmannH, et al. (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123: 2512–2518.

15. CorballisMC (2003) From mouth to hand: gesture, speech, and the evolution of right-handedness. Behav Brain Sci 26: 199–208; discussion 208-160.

16. Bishop DVM (1990) Handedness and developmental disorder. Lavenham: Mac Keith Press. xi, 213 p. p.

17. MaisogJM, EinbinderER, FlowersDL, TurkeltaubPE, EdenGF (2008) A meta-analysis of functional neuroimaging studies of dyslexia. Ann N Y Acad Sci 1145: 237–259.

18. RichlanF, KronbichlerM, WimmerH (2012) Structural abnormalities in the dyslexic brain: A meta-analysis of voxel-based morphometry studies. Hum Brain Mapp doi: 10.1002/hbm.22127

19. ShapleskeJ, RossellSL, WoodruffPW, DavidAS (1999) The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Res Brain Res Rev 29: 26–49.

20. SommerI, RamseyN, KahnR, AlemanA, BoumaA (2001) Handedness, language lateralisation and anatomical asymmetry in schizophrenia: meta-analysis. Br J Psychiatry 178: 344–351.

21. ClarkGM, CrowTJ, BarrickTR, CollinsonSL, JamesAC, et al. (2010) Asymmetry loss is local rather than global in adolescent onset schizophrenia. Schizophr Res 120: 84–86.

22. DragovicM, HammondG (2005) Handedness in schizophrenia: a quantitative review of evidence. Acta Psychiatr Scand 111: 410–419.

23. FrancksC, FisherSE, MarlowAJ, MacPhieIL, TaylorKE, et al. (2003) Familial and genetic effects on motor coordination, laterality, and reading-related cognition. Am J Psychiatry 160: 1970–1977.

24. MedlandSE, DuffyDL, WrightMJ, GeffenGM, HayDA, et al. (2009) Genetic influences on handedness: Data from 25,732 Australian and Dutch twin families. Neuropsychologia 47: 330–337.

25. GeschwindDH, MillerBL, DeCarliC, CarmelliD (2002) Heritability of lobar brain volumes in twins supports genetic models of cerebral laterality and handedness. Proc Natl Acad Sci U S A 99: 3176–3181.

26. Annett M (1985) Left, Right, Hand and Brain: The Right Shift Theory. London: Psychology Press. 488 p. p.

27. KlarAJS (1996) A single locus, RGHT, specifies preference for hand utilization in humans. Cold Spring Harbor Symposia on Quantitative Biology 61: 59–65.

28. McManus C (2004) Right hand, left hand: The origins of asymmetry in brains, bodies, atoms and cultures: Harvard University Press.

29. ChakravartiA (1999) Population genetics–making sense out of sequence. Nat Genet 21: 56–60.

30. ReichDE, LanderES (2001) On the allelic spectrum of human disease. Trends Genet 17: 502–510.

31. LanderES (1996) The new genomics: global views of biology. Science 274: 536–539.

32. FrancksC, MaegawaS, LaurenJ, AbrahamsBS, Velayos-BaezaA, et al. (2007) LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Molecular Psychiatry 12: 1129–1139.

33. MedlandSE, DuffyDL, SpurdleAB, WrightMJ, GeffenGM, et al. (2005) Opposite effects of androgen receptor CAG repeat length on increased risk of left-handedness in males and females. Behav Genet 35: 735–744.

34. HampsonE, SankarJS (2012) Hand preference in humans is associated with testosterone levels and androgen receptor gene polymorphism. Neuropsychologia 50: 2018–2025.

35. ErikssonN, MacphersonJM, TungJY, HonLS, NaughtonB, et al. (2010) Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet 6: e1000993.

36. McManusIC, DavisonA, ArmourJAL (2013) Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies. Ann NY Acad Sci 1288: 48–58.

37. ScerriTS, BrandlerWM, ParacchiniS, MorrisAP, RingSM, et al. (2011) PCSK6 is associated with handedness in individuals with dyslexia. Hum Mol Genet 20: 608–614.

38. GrandeC, PatelNH (2009) Nodal signalling is involved in left-right asymmetry in snails. Nature 457: 1007–1011.

39. MercolaM, LevinM (2001) Left-right asymmetry determination in vertebrates. Annu Rev Cell Dev Biol 17: 779–805.

40. ConstamDB, RobertsonEJ (2000) SPC4/PACE4 regulates a TGFbeta signaling network during axis formation. Genes Dev 14: 1146–1155.

41. ArningL, OcklenburgS, SchulzS, NessV, GerdingWM, et al. (2013) VNTR Polymorphism Is Associated with Degree of Handedness but Not Direction of Handedness. PLoS One 8: e67251.

42. HowieBN, DonnellyP, MarchiniJ (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5: e1000529.

43. ScerriTS, ParacchiniS, MorrisA, MacPhieIL, TalcottJ, et al. (2010) Identification of candidate genes for dyslexia susceptibility on chromosome 18. PLoS One 5: e13712.

44. FrancksC, ParacchiniS, SmithSD, RichardsonAJ, ScerriTS, et al. (2004) A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. Am J Hum Genet 75: 1046–1058.

45. NgA, WongM, VivianoB, ErlichJM, AlbaG, et al. (2009) Loss of glypican-3 function causes growth factor-dependent defects in cardiac and coronary vascular development. Dev Biol 335: 208–215.

46. ZhouJ, YangF, LeuNA, WangPJ (2012) MNS1 is essential for spermiogenesis and motile ciliary functions in mice. PLoS Genet 8: e1002516.

47. BlakeJA, BultCJ, EppigJT, KadinJA, RichardsonJE (2009) The Mouse Genome Database genotypes::phenotypes. Nucleic Acids Res 37: D712–719.

48. SegreAV, GroopL, MoothaVK, DalyMJ, AltshulerD (2010) Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet 6: e1001058.

49. El ZeinL, Ait-LounisA, MorleL, ThomasJ, ChhinB, et al. (2009) RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. J Cell Sci 122: 3180–3189.

50. HaycraftCJ, BanizsB, Aydin-SonY, ZhangQ, MichaudEJ, et al. (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1: e53.

51. YoshibaS, ShiratoriH, KuoIY, KawasumiA, ShinoharaK, et al. (2012) Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 338: 226–231.

52. ConstamDB, RobertsonEJ (1999) Regulation of bone morphogenetic protein activity by pro domains and proprotein convertases. J Cell Biol 144: 139–149.

53. YeoC, WhitmanM (2001) Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol Cell 7: 949–957.

54. ChazaudC, ChambonP, DolleP (1999) Retinoic acid is required in the mouse embryo for left-right asymmetry determination and heart morphogenesis. Development 126: 2589–2596.

55. GazitA, YanivA, BaficoA, PramilaT, IgarashiM, et al. (1999) Human frizzled 1 interacts with transforming Wnts to transduce a TCF dependent transcriptional response. Oncogene 18: 5959–5966.

56. NakayaMA, BirisK, TsukiyamaT, JaimeS, RawlsJA, et al. (2005) Wnt3a links left-right determination with segmentation and anteroposterior axis elongation. Development 132: 5425–5436.

57. CotaCD, BagherP, PelcP, SmithCO, BodnerCR, et al. (2006) Mice with mutations in Mahogunin ring finger-1 (Mgrn1) exhibit abnormal patterning of the left-right axis. Dev Dyn 235: 3438–3447.

58. ShannonMB, PattonBL, HarveySJ, MinerJH (2006) A hypomorphic mutation in the mouse laminin alpha5 gene causes polycystic kidney disease. J Am Soc Nephrol 17: 1913–1922.

59. BadanoJL, MitsumaN, BealesPL, KatsanisN (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7: 125–148.

60. WatsonT (1836) An account of some cases of transposition observed in the human body. Lond Med Gazette 18: 393–403.

61. CockayneEA (1938) The genetics of transposition of the viscera. Q J Med 31: 479–493.

62. TorgersenJ (1950) Situs inversus, asymmetry, and twinning. Am J Hum Genet 2: 361–370.

63. McManusIC, MartinN, StubbingsGF, ChungEM, MitchisonHM (2004) Handedness and situs inversus in primary ciliary dyskinesia. Proc Biol Sci 271: 2579–2582.

64. KennedyDN, O'CravenKM, TichoBS, GoldsteinAM, MakrisN, et al. (1999) Structural and functional brain asymmetries in human situs inversus totalis. Neurology 53: 1260–1265.

65. IharaA, HirataM, FujimakiN, GotoT, UmekawaY, et al. (2010) Neuroimaging study on brain asymmetries in situs inversus totalis. J Neurol Sci 288: 72–78.

66. SunT, PatoineC, Abu-KhalilA, VisvaderJ, SumE, et al. (2005) Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science 308: 1794–1798.

67. BenadibaC, MagnaniD, NiquilleM, MorleL, VallotonD, et al. (2012) The ciliogenic transcription factor RFX3 regulates early midline distribution of guidepost neurons required for corpus callosum development. PLoS Genet 8: e1002606.

68. JohnsonJM, CastleJ, Garrett-EngeleP, KanZ, LoerchPM, et al. (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302: 2141–2144.

69. WitelsonSF (1985) The brain connection: the corpus callosum is larger in left-handers. Science 229: 665–668.

70. HabibM, GayraudD, OlivaA, RegisJ, SalamonG, et al. (1991) Effects of handedness and sex on the morphology of the corpus callosum: a study with brain magnetic resonance imaging. Brain Cogn 16: 41–61.

71. MuellerKLO, MarionSD, PaulLK, BrownWS (2009) Bimanual Motor Coordination in Agenesis of the Corpus Callosum. Behav Neurosci 123: 1000–1011.

72. SaccoS, MoutardML, FagardJ (2006) Agenesis of the corpus callosum and the establishment of handedness. Dev Psychobiol 48: 472–481.

73. ConchaML, BurdineRD, RussellC, SchierAF, WilsonSW (2000) A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28: 399–409.

74. BarthKA, MiklosiA, WatkinsJ, BiancoIH, WilsonSW, et al. (2005) fsi zebrafish show concordant reversal of laterality of viscera, neuroanatomy, and a subset of behavioral responses. Current biology : CB 15: 844–850.

75. MarchiniJ, HowieB (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11: 499–511.

76. IvlievAE, t HoenPA, van Roon-MomWM, PetersDJ, SergeevaMG (2012) Exploring the transcriptome of ciliated cells using in silico dissection of human tissues. PLoS One 7: e35618.

77. MassinenS, HokkanenME, MatssonH, TammimiesK, Tapia-PaezI, et al. (2011) Increased expression of the dyslexia candidate gene DCDC2 affects length and signaling of primary cilia in neurons. PLoS One 6: e20580.

78. ChandrasekarG, VesterlundL, HultenbyK, Tapia-PáezI, KereJ (2013) The Zebrafish Orthologue of the Dyslexia Candidate Gene DYX1C1 Is Essential for Cilia Growth and Function. PLoS One 8: e63123.

79. GalaburdaAM, ShermanGF, RosenGD, AboitizF, GeschwindN (1985) Developmental dyslexia: four consecutive patients with cortical anomalies. Ann Neurol 18: 222–233.

80. GalaburdaAM (1989) Ordinary and extraordinary brain development: Anatomical variation in developmental dyslexia. Ann Dyslexia 39: 65–80.

81. StoodleyCJ, SteinJF (2006) A processing speed deficit in dyslexic adults? Evidence from a peg-moving task. Neurosci Lett 399: 264–267.

82. RamusF, PidgeonE, FrithU (2003) The relationship between motor control and phonology in dyslexic children. Journal of Child Psychology and Psychiatry 44: 712–722.

83. FawcettAJ, NicolsonRI, DeanP (1996) Impaired performance of children with dyslexia on a range of cerebellar tasks. Annals of Dyslexia 46: 259–283.

84. IversenS, BergK, EllertsenB, TonnessenFE (2005) Motor coordination difficulties in a municipality group and in a clinical sample of poor readers. Dyslexia 11: 217–231.

85. NicolsonRI, FawcettAJ (1990) Automaticity - a New Framework for Dyslexia Research. Cognition 35: 159–182.

86. GetchellN, PabrejaP, NeeldK, CarrioV (2007) Comparing children with and without dyslexia on the movement assessment battery for children and the test of gross motor development. Perceptual and Motor Skills 105: 207–214.

87. GoldingJ, PembreyM, JonesR (2001) ALSPAC–the Avon Longitudinal Study of Parents and Children. I. Study methodology. Paediatr Perinat Epidemiol 15: 74–87.

88. BoydA, GoldingJ, MacleodJ, LawlorDA, FraserA, et al. (2012) Cohort Profile: The ‘Children of the 90s’–the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol 42: 111–27.

89. Henderson SE, Sugden DA (1992) Movement Assessment Battery for Children manual. Sidcup: The Psychological Corporation.

90. AndersonCA, PetterssonFH, ClarkeGM, CardonLR, MorrisAP, et al. (2010) Data quality control in genetic case-control association studies. Nat Protoc 5: 1564–1573.

91. DelaneauO, MarchiniJ, ZaguryJF (2012) A linear complexity phasing method for thousands of genomes. Nat Methods 9: 179–181.

92. MagiR, MorrisAP (2010) GWAMA: software for genome-wide association meta-analysis. Bmc Bioinformatics 11: 288.

93. WebberC, Hehir-KwaJY, NguyenDQ, de VriesBB, VeltmanJA, et al. (2009) Forging links between human mental retardation-associated CNVs and mouse gene knockout models. PLoS Genet 5: e1000531.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#