#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Central Role for in Regulation of Islet Function in Man


In this paper, we report the first large genome-wide association study in man for glucose-stimulated insulin secretion (GSIS) indices during an oral glucose tolerance test. We identify seven genetic loci and provide effects on GSIS for all previously reported glycemic traits and obesity genetic loci in a large-scale sample. We observe paradoxical effects of genetic variants in the growth factor receptor-bound protein 10 (GRB10) gene yielding both reduced GSIS and reduced fasting plasma glucose concentrations, specifically showing a parent-of-origin effect of GRB10 on lower fasting plasma glucose and enhanced insulin sensitivity for maternal and elevated glucose and decreased insulin sensitivity for paternal transmissions of the risk allele. We also observe tissue-specific differences in DNA methylation and allelic imbalance in expression of GRB10 in human pancreatic islets. We further disrupt GRB10 by shRNA in human islets, showing reduction of both insulin and glucagon expression and secretion. In conclusion, we provide evidence for complex regulation of GRB10 in human islets. Our data suggest that tissue-specific methylation and imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.


Vyšlo v časopise: A Central Role for in Regulation of Islet Function in Man. PLoS Genet 10(4): e32767. doi:10.1371/journal.pgen.1004235
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004235

Souhrn

In this paper, we report the first large genome-wide association study in man for glucose-stimulated insulin secretion (GSIS) indices during an oral glucose tolerance test. We identify seven genetic loci and provide effects on GSIS for all previously reported glycemic traits and obesity genetic loci in a large-scale sample. We observe paradoxical effects of genetic variants in the growth factor receptor-bound protein 10 (GRB10) gene yielding both reduced GSIS and reduced fasting plasma glucose concentrations, specifically showing a parent-of-origin effect of GRB10 on lower fasting plasma glucose and enhanced insulin sensitivity for maternal and elevated glucose and decreased insulin sensitivity for paternal transmissions of the risk allele. We also observe tissue-specific differences in DNA methylation and allelic imbalance in expression of GRB10 in human pancreatic islets. We further disrupt GRB10 by shRNA in human islets, showing reduction of both insulin and glucagon expression and secretion. In conclusion, we provide evidence for complex regulation of GRB10 in human islets. Our data suggest that tissue-specific methylation and imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.


Zdroje

1. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT and Novartis Institutes of BioMedical Research, Lund University (2007) SaxenaR, VoightBF, LyssenkoV, BurttNP, et al. (2007) Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science 316: 1331–1336 doi:10.1126/science.1142358

2. DupuisJ, LangenbergC, ProkopenkoI, SaxenaR, SoranzoN, et al. (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42: 105–116 Available: http://www.nature.com/ng/journal/v42/n2/abs/ng.520.html.

3. ManningAK, HivertM-F, ScottRA, GrimsbyJL, Bouatia-NajiN, et al. (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 44: 659–669 doi:10.1038/ng.2274

4. MorrisAP, VoightBF, TeslovichTM, FerreiraT, SegrèAV, et al. (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44: 981–990 doi:10.1038/ng.2383

5. ScottLJ, MohlkeKL, BonnycastleLL, WillerCJ, LiY, et al. (2007) A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants. Science 316: 1341–1345 doi:10.1126/science.1142382

6. ScottRA, LagouV, WelchRP, WheelerE, MontasserME, et al. (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44: 991–1005 doi:10.1038/ng.2385

7. SladekR, RocheleauG, RungJ, DinaC, ShenL, et al. (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881–885 doi:10.1038/nature05616

8. ZegginiE, WeedonMN, LindgrenCM, FraylingTM, ElliottKS, et al. (2007) Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes. Science 316: 1336–1341 doi:10.1126/science.1142364

9. IngelssonE, LangenbergC, HivertM-F, ProkopenkoI, LyssenkoV, et al. (2010) Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans. Diabetes 59: 1266–1275 doi:10.2337/db09-1568

10. LyssenkoV, JonssonA, AlmgrenP, PulizziN, IsomaaB, et al. (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359: 2220–2232.

11. BlagitkoN, MergenthalerS, SchulzU, WollmannH, CraigenW, et al. (2000) Human GRB10 is imprinted and expressed from the paternal and maternal allele in a highly tissue- and isoform-specific fashion. Human Molecular Genetics 9: 1587–1595.

12. MonkD, ArnaudP, FrostJ, HillsFA, StanierP, et al. (2009) Reciprocal imprinting of human GRB10 in placental trophoblast and brain: evolutionary conservation of reversed allelic expression. Human Molecular Genetics 18: 3066–3074 doi:10.1093/hmg/ddp248

13. RampersaudE, DamcottCM, FuM, ShenH, McArdleP, et al. (2007) Identification of Novel Candidate Genes for Type 2 Diabetes From a Genome-Wide Association Scan in the Old Order Amish: Evidence for Replication From Diabetes-Related Quantitative Traits and From Independent Populations. Diabetes 56: 3053–3062 doi:10.2337/db07-0457

14. PurcellS, ShamP, DalyMJ (2005) Parental phenotypes in family-based association analysis. Am J Hum Genet 76: 249–259 doi:10.1086/427886

15. HorvathS, XuX, LairdNM (2001) The family based association test method: strategies for studying general genotype–phenotype associations. Eur J Hum Genet 9: 301–306 doi:10.1038/sj.ejhg.5200625

16. AltshulerD, HirschhornJN, KlannemarkM, LindgrenCM, VohlMC, et al. (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26: 76–80 doi:10.1038/79216

17. NilssonPM, NilssonJA, BerglundG (2006) Population-attributable risk of coronary heart disease risk factors during long-term follow-up: the Malmo Preventive Project. J Intern Med 260: 134–141 doi:10.1111/j.1365-2796.2006.01671.x

18. ArnaudP (2003) Conserved methylation imprints in the human and mouse GRB10 genes with divergent allelic expression suggests differential reading of the same mark. Human Molecular Genetics 12: 1005–1019 doi:10.1093/hmg/ddg110

19. NitertMD, DayehT, VolkovP, ElgzyriT, HallE, et al. (2012) Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 61: 3322–3332 doi:10.2337/db11-1653

20. MoothaVK, LindgrenCM, ErikssonK-F, SubramanianA, SihagS, et al. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34: 267–273 doi:10.1038/ng1180

21. StančákováA, CivelekM, SaleemNK, SoininenP, KangasAJ, et al. (2012) Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes 61: 1895–1902 doi:10.2337/db11-1378

22. DoironB, HuW, NortonL, DeFronzoRA (2012) Lentivirus shRNA Grb10 targeting the pancreas induces apoptosis and improved glucose tolerance due to decreased plasma glucagon levels. Diabetologia 55: 719–728 doi:10.1007/s00125-011-2414-z

23. ZhangJ, ZhangN, LiuM, LiX, ZhouL, et al. (2012) Disruption of Growth Factor Receptor-Binding Protein 10 in the Pancreas Enhances β-Cell Proliferation and Protects Mice From Streptozotocin-Induced β-Cell Apoptosis. Diabetes 61: 3189–3198 doi:10.2337/db12-0249

24. HoltL, SiddleK (2005) Grb10 and Grb14: enigmatic regulators of insulin action - and more? Biochem J 388: 393–406 doi:10.1042/BJ20050216

25. YuY, YoonS-O, PoulogiannisG, YangQ, MaXM, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science Signaling 332: 1322–1326 Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=21659605&retmode=ref&cmd=prlinks.

26. WangL, BalasB, Christ-RobertsCY, KimRY, RamosFJ, et al. (2007) Peripheral disruption of the grb10 gene enhances insulin signaling and sensitivity in vivo. Molecular and Cellular Biology 27: 6497–6505 Available: http://mcb.asm.org/cgi/doi/10.1128/MCB.00679-07.

27. VoightBF, ScottLJ, SteinthorsdottirV, MorrisAP, DinaC, et al. (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42: 579–589 doi:10.1038/ng.609

28. MatthewsJNS, AltmanDG, CampbellMJ, RoystonP (1990) Analysis of Serial Measurements in Medical-Research. Brit Med J 300: 230–235 Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1662068/pdf/bmj00163-0030.pdf.

29. MarchiniJ, HowieB, MyersS, McVeanG, DonnellyP (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39: 906–913 doi:10.1038/ng2088

30. LiY, WillerC, SannaS, AbecasisG (2009) Genotype imputation. Annu Rev Genomics Hum Genet 10: 387–406 doi:10.1146/annurev.genom.9.081307.164242

31. LiY, WillerCJ, DingJ, ScheetP, AbecasisGR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34: 816–834 doi:10.1002/gepi.20533

32. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis.

33. DevlinB, RoederK (2004) Genomic Control for Association Studies. Biometrics 55: 997–1004 doi:10.1111/j.0006-341X.1999.00997.x

34. MägiR, MorrisAP (2010) GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11: 288 doi:10.1186/1471-2105-11-288

35. PurcellS, NealeB, Todd-BrownK, ThomasL, FerreiraMAR, et al. (2007) PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics 81: 559–575 doi:10.1086/519795

36. IsomaaB, ForsénB, LahtiK, HolmströmN, WadénJ, et al. (2010) A family history of diabetes is associated with reduced physical fitness in the Prevalence, Prediction and Prevention of Diabetes (PPP)–Botnia study. Diabetologia 53: 1709–1713 doi:10.1007/s00125-010-1776-y

37. ErikssonKF, LindgardeF (1990) Impaired glucose tolerance in a middle-aged male urban population: a new approach for identifying high-risk cases. Diabetologia 33: 526–531.

38. ErikssonKF, LindgardeF (1991) Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise. The 6-year Malmö feasibility study. Diabetologia 34: 891–898.

39. TaneeraJ, LangS, SharmaA, FadistaJ, ZhouY, et al. (2012) A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metabolism 16: 122–134 doi:10.1016/j.cmet.2012.06.006

40. RivaM, NitertMD, VossU, SathanooriR, LindqvistA, et al. (2011) Nesfatin-1 stimulates glucagon and insulin secretion and beta cell NUCB2 is reduced in human type 2 diabetic subjects. Cell Tissue Res 346: 393–405 doi:10.1007/s00441-011-1268-5

41. PruimRJ, WelchRP, SannaS, TeslovichTM, ChinesPS, et al. (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26: 2336–2337 doi:10.1093/bioinformatics/btq419

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#