#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Three Groups of Transposable Elements with Contrasting Copy Number Dynamics and Host Responses in the Maize ( ssp. ) Genome


Because transposable elements (TEs) constitute most angiosperm nuclear DNA, the interaction between TEs and their host genome is a key component for understanding the function and evolution of plant genomes. The diversity of the host response has been studied a great deal, including the biogenesis of small interfering RNAs (siRNAs) that target TEs for epigenetic modifications. However, little is known about variation in TE content among closely related genomes and whether siRNA expression tracks this variation. To that end, we surveyed both the copy number and the siRNA targeting of more than 1500 distinct TE subfamilies in the B73 maize reference genome. These surveys indicated that TE subfamilies fall naturally into three distinctive groups based on their class and copy number, but these groups also differ with respect to their location in the genome, their age, their expression and their siRNA regulation. The presence and consistency of these TE groups was also assessed in two genetically distant maize landraces with contrasting genome sizes. The variation in siRNA targeting across different TE groups and families, as well as the lack of correlation between TE and siRNA abundances, argues for the existence of multiple mechanisms and strategies for TE silencing.


Vyšlo v časopise: Three Groups of Transposable Elements with Contrasting Copy Number Dynamics and Host Responses in the Maize ( ssp. ) Genome. PLoS Genet 10(4): e32767. doi:10.1371/journal.pgen.1004298
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004298

Souhrn

Because transposable elements (TEs) constitute most angiosperm nuclear DNA, the interaction between TEs and their host genome is a key component for understanding the function and evolution of plant genomes. The diversity of the host response has been studied a great deal, including the biogenesis of small interfering RNAs (siRNAs) that target TEs for epigenetic modifications. However, little is known about variation in TE content among closely related genomes and whether siRNA expression tracks this variation. To that end, we surveyed both the copy number and the siRNA targeting of more than 1500 distinct TE subfamilies in the B73 maize reference genome. These surveys indicated that TE subfamilies fall naturally into three distinctive groups based on their class and copy number, but these groups also differ with respect to their location in the genome, their age, their expression and their siRNA regulation. The presence and consistency of these TE groups was also assessed in two genetically distant maize landraces with contrasting genome sizes. The variation in siRNA targeting across different TE groups and families, as well as the lack of correlation between TE and siRNA abundances, argues for the existence of multiple mechanisms and strategies for TE silencing.


Zdroje

1. TenaillonMI, HollisterJD, GautBS (2010) A triptych of the evolution of plant transposable elements. Trends Plant Sci 15: 471–478.

2. LeonardoTE, NuzhdinSV (2002) Intracellular battlegrounds: conflict and cooperation between transposable elements. Genet Res 80: 155–161.

3. LischD (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60: 43–66.

4. LawJA, JacobsenSE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11: 204–220.

5. AxtellMJ (2013) Classification and Comparison of Small RNAs from Plants. Annu Rev Plant Biol 64: 137–159.

6. SlotkinRK, MartienssenR (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8: 272–285.

7. NobutaK, LuC, ShrivastavaR, PillayM, De PaoliE, et al. (2008) Distinct size distribution of endogeneous siRNAs in maize: Evidence from deep sequencing in the mop1-1 mutant. Proc Natl Acad Sci U S A 105: 14958–14963.

8. NuthikattuS, McCueAD, PandaK, FultzD, DeFraiaC, et al. (2013) The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. Plant Physiol 162: 116–131.

9. Mari-OrdonezA, MarchaisA, EtcheverryM, MartinA, ColotV, et al. (2013) Reconstructing de novo silencing of an active plant retrotransposon. Nat Genet 45: 1029–1039.

10. PieguB, GuyotR, PicaultN, RoulinA, SaniyalA, et al. (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16: 1262–1269.

11. HawkinsJS, KimH, NasonJD, WingRA, WendelJF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16: 1252–1261.

12. HuangCR, BurnsKH, BoekeJD (2012) Active transposition in genomes. Annu Rev Genet 46: 651–675.

13. JiaY, LischDR, OhtsuK, ScanlonMJ, NettletonD, et al. (2009) Loss of RNA-dependent RNA polymerase 2 (RDR2) function causes widespread and unexpected changes in the expression of transposons, genes, and 24-nt small RNAs. PLoS Genet 5: e1000737.

14. BarberWT, ZhangW, WinH, VaralaKK, DorweilerJE, et al. (2012) Repeat associated small RNAs vary among parents and following hybridization in maize. Proc Natl Acad Sci U S A 109: 10444–10449.

15. LuC, KulkarniK, SouretFF, MuthuValliappanR, TejSS, et al. (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16: 1276–1288.

16. SchnablePS, WareD, FultonRS, SteinJC, WeiF, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115.

17. TenaillonMI, HuffordMB, GautBS, Ross-IbarraJ (2011) Genome Size and Transposable Element Content as Determined by High-Throughput Sequencing in Maize and Zea luxurians. Genome Biol Evol 3: 219–229.

18. ChiaJM, SongC, BradburyPJ, CostichD, de LeonN, et al. (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44: 803–807.

19. FangZ, PyhajarviT, WeberAL, DaweRK, GlaubitzJC, et al. (2012) Megabase-scale inversion polymorphism in the wild ancestor of maize. Genetics 191: 883–894.

20. DiezCM, GautBS, MecaE, ScheinvarE, Montes-HernandezS, et al. (2013) Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytol 199 ((1)) 264–76.

21. MorganteM, De PaoliE, RadovicS (2007) Transposable elements and the plant pan-genomes. Curr Opin Plant Biol 10: 149–155.

22. BaucomRS, EstillJC, ChaparroC, UpshawN, JogiA, et al. (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5: e1000732.

23. MeyersBC, TingeySV, MorganteM (2001) Abundance, Distribution, and Transcriptional Activity of Repetitive Elements in the Maize Genome. Genome Research 11: 1660–1676.

24. SanMiguelP, GautBS, TikhonovA, NakajimaY, BennetzenJL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20: 43–45.

25. WickerT, SabotF, Hua-VanA, BennetzenJL, CapyP, et al. (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8: 973–982.

26. ZhongX, HaleCJ, LawJA, JohnsonLM, FengS, et al. (2012) DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nat Struct Mol Biol 19: 870–875.

27. BousiosA, KourmpetisYA, PavlidisP, MingaE, TsaftarisA, et al. (2012) The turbulent life of Sirevirus retrotransposons and the evolution of the maize genome: more than ten thousand elements tell the story. Plant J 69: 475–488.

28. SchmitzRJ, HeY, Valdes-LopezO, KhanSM, JoshiT, et al. (2013) Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res 23: 1663–1674.

29. LischD (2012) Regulation of transposable elements in maize. Curr Opin Plant Biol 15: 511–516.

30. RegulskiM, LuZ, KendallJ, DonoghueMT, ReindersJ, et al. (2013) The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res 23: 1651–1662.

31. BullardJH, PurdomE, HansenKD, DudoitS (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11: 94.

32. Swanson-WagnerRA, EichtenSR, KumariS, TiffinP, SteinJC, et al. (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20: 1689–1699.

33. WangQ, DoonerHK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci U S A 103: 17644–17649.

34. HollisterJD, GautBS (2009) Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19: 1419–1428.

35. MaJ, DevosKM, BennetzenJL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14: 860–869.

36. TianZ, RizzonC, DuJ, ZhuL, BennetzenJ, et al. (2009) Do genetic recombination and gene density shape the pattern of DNA elimination in rice LTR-retrotransposons? Genome Res 19: 2221–2230.

37. KatoM, MiuraA, BenderJ, JacobsenSE, KakutaniT (2003) Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol 13: 421–426.

38. OhtsuK, SmithMB, EmrichSJ, BorsukLA, ZhouR, et al. (2007) Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J 52: 391–404.

39. LiH, FreelingM, LischD (2010) Epigenetic reprogramming during vegetative phase change in maize. P Natl Acad Sci Usa 107: 22184–22189.

40. WoodhouseMR, FreelingM, LischD (2006) Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol 4: e339.

41. VonholdtBM, TakunoS, GautBS (2012) Recent Retrotransposon Insertions Are Methylated and Phylogenetically Clustered in Japonica Rice (Oryza sativa spp. japonica). Mol Biol Evol 29: 3193–3203.

42. HeG, ZhuX, EllingAA, ChenL, WangX, et al. (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22: 17–33.

43. CalarcoJP, BorgesF, DonoghueMT, Van ExF, JullienPE, et al. (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151: 194–205.

44. HeG, ChenB, WangX, LiX, LiJ, et al. (2013) Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome Biol 14: R57.

45. EichtenSR, VaughnMW, HermansonPJ, NMS (2012) Variation in DNA Methylation Patterns is More Common among Maize Inbreds than among Tissues. The Plant Genome doi:10.3835/plantgenome2012.06.0009

46. EichtenSR, EllisNA, MakarevitchI, YehCT, GentJI, et al. (2012) Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet 8: e1003127.

47. GautBS, DoebleyJF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci U S A 94: 6809–6814.

48. DoebleyJF, GautBS, SmithBD (2006) The molecular genetics of crop domestication. Cell 127: 1309–1321.

49. LischD, BennetzenJL (2011) Transposable element origins of epigenetic gene regulation. Curr Opin Plant Biol 14: 156–161.

50. EichtenSR, Swanson-WagnerRA, SchnableJC, WatersAJ, HermansonPJ, et al. (2011) Heritable epigenetic variation among maize inbreds. PLoS Genet 7: e1002372.

51. NingZM, CoxAJ, MullikinJC (2001) SSAHA: A fast search method for large DNA databases. Genome Res 11: 1725–1729.

52. WeiF, SteinJC, LiangC, ZhangJ, FultonRS, et al. (2009) Detailed analysis of a contiguous 22-Mb region of the maize genome. PLoS Genet 5: e1000728.

53. Dawe RK (2010) Maize centromeres and knobs (neocentromeres). In: Bennetzen JF, Hake SC, editors. Handbook of Maize: Genetics and Genomics. New York: Springer Science+ Business Media. pp. 239–250.

54. BennetzenJL, ColemanC, LiuR, MaJ, RamakrishnaW (2004) Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 7: 732–736.

55. MartinM (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17: 10–12.

56. LiH, DurbinR (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589–595.

57. SekhonRS, BriskineR, HirschCN, MyersCL, SpringerNM, et al. (2013) Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays. PLoS One 8: e61005.

58. MortazaviA, WilliamsBA, McCueK, SchaefferL, WoldB (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#