#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Mouse Pulmonary Adenoma Susceptibility 1 Locus Is an Expression QTL Modulating -4A


A person's risk of developing cancer depends on both genetic and environmental factors. To study the genetic predisposition to cancer without the influence of environmental variables, scientists study mice treated with urethane, a chemical carcinogen that induces lung tumors. By crossing inbred (genetically identical) strains of mice that are either resistant or susceptible to urethane-induced cancer, researchers can search for genes associated with tumor formation in the offspring. From previous work of this type using second-generation mice, it was already known that a region on chromosome 6 was associated with tumor formation. Now, a new study, carried out in a fourth-generation mouse population, focused to a single gene of chromosome 6 called Kras. This gene forms two different messenger RNA transcripts, called Kras-4A and Kras-4B, that produce two proteins with slightly different structure and, perhaps, function. The study found that mice susceptible to lung tumors have relatively more Kras-4A messenger RNA than resistant mice and that this difference may be due to small variations in the DNA near or within this gene.


Vyšlo v časopise: Mouse Pulmonary Adenoma Susceptibility 1 Locus Is an Expression QTL Modulating -4A. PLoS Genet 10(4): e32767. doi:10.1371/journal.pgen.1004307
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004307

Souhrn

A person's risk of developing cancer depends on both genetic and environmental factors. To study the genetic predisposition to cancer without the influence of environmental variables, scientists study mice treated with urethane, a chemical carcinogen that induces lung tumors. By crossing inbred (genetically identical) strains of mice that are either resistant or susceptible to urethane-induced cancer, researchers can search for genes associated with tumor formation in the offspring. From previous work of this type using second-generation mice, it was already known that a region on chromosome 6 was associated with tumor formation. Now, a new study, carried out in a fourth-generation mouse population, focused to a single gene of chromosome 6 called Kras. This gene forms two different messenger RNA transcripts, called Kras-4A and Kras-4B, that produce two proteins with slightly different structure and, perhaps, function. The study found that mice susceptible to lung tumors have relatively more Kras-4A messenger RNA than resistant mice and that this difference may be due to small variations in the DNA near or within this gene.


Zdroje

1. GariboldiM, ManentiG, CanzianF, FalvellaFS, RadiceMT, et al. (1993) A major susceptibility locus to murine lung carcinogenesis maps on chromosome 6. Nature Genet 3: 132–136.

2. ManentiG, DraganiTA (2005) Pas1 haplotype-dependent genetic predisposition to lung tumorigenesis in rodents: A meta-analysis. Carcinogenesis 26: 875–882.

3. ManentiG, GalbiatiF, Giannì BarreraR, PettinicchioA, AcevedoA, et al. (2004) Haplotype sharing suggests that a genomic segment containing six genes accounts for the pulmonary adenoma susceptibility 1 (Pas1) locus activity in mice. Oncogene 23: 4495–4504.

4. WangM, LemonWJ, LiuG, WangY, IraqiFA, et al. (2003) Fine mapping and identification of candidate pulmonary adenoma susceptibility 1 genes using advanced intercross lines. Cancer Res 63: 3317–3324.

5. WangM, FutamuraM, WangY, YouM (2005) Pas1c1 is a candidate for the mouse pulmonary adenoma susceptibility 1 locus. Oncogene 24: 1958–1963.

6. LiuP, WangY, VikisH, MaciagA, WangD, et al. (2006) Candidate lung tumor susceptibility genes identified through whole-genome association analyses in inbred mice. Nat Genet 38: 888–895.

7. KingPD, LubeckBA, LapinskiPE (2013) Nonredundant functions for ras GTPase-activating proteins in tissue homeostasis. Sci Signal 6: re1.

8. YouM, CandrianU, MaronpotRR, StonerGD, AndersonMW (1989) Activation of the ki-ras protooncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse. Proc Natl Acad Sci USA 86: 3070–3074.

9. ReFC, ManentiG, BorrelloMG, ColomboMP, FisherJH, et al. (1992) Multiple molecular alterations in mouse lung tumors. Mol Carcinog 5: 155–160.

10. JohnsonL, MercerK, GreenbaumD, BronsonRT, CrowleyD, et al. (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410: 1111–1116.

11. MeuwissenR, LinnSC, van dV, MooiWJ, BernsA (2001) Mouse model for lung tumorigenesis through cre/lox controlled sporadic activation of the K-ras oncogene. Oncogene 20: 6551–6558.

12. ZhangZ, WangY, VikisHG, JohnsonL, LiuG, et al. (2001) Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat Genet 29: 25–33.

13. ToMD, Perez-LosadaJ, MaoJH, HsuJ, JacksT, et al. (2006) A functional switch from lung cancer resistance to susceptibility at the Pas1 locus in Kras2LA2 mice. Nat Genet 38: 926–930.

14. PriorIA, HancockJF (2012) Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol 23: 145–153.

15. VoiceJK, KlemkeRL, LeA, JacksonJH (1999) Four human ras homologs differ in their abilities to activate raf-1, induce transformation, and stimulate cell motility. J Biol Chem 274: 17164–17170.

16. PlowmanSJ, ArendsMJ, BrownsteinDG, LuoF, DevenneyPS, et al. (2006) The K-ras 4A isoform promotes apoptosis but does not affect either lifespan or spontaneous tumor incidence in aging mice. Exp Cell Res 312: 16–26.

17. WangY, YouM, WangY (2001) Alternative splicing of the K-ras gene in mouse tissues and cell lines. Exp Lung Res 27: 255–267.

18. PellsS, DivjakM, RomanowskiP, ImpeyH, HawkinsNJ, et al. (1997) Developmentally-regulated expression of murine K-ras isoforms. Oncogene 15: 1781–1786.

19. ToMD, WongCE, KarnezisAN, Del RosarioR, Di LauroR, et al. (2008) Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nat Genet 40: 1240–1244.

20. PatekCE, ArendsMJ, WallaceWA, LuoF, HaganS, et al. (2008) Mutationally activated K-ras 4A and 4B both mediate lung carcinogenesis. Exp Cell Res 314: 1105–1114.

21. ChenB, JohansonL, WiestJS, AndersonMW, YouM (1994) The second intron of the K-ras gene contains regulatory elements associated with mouse lung tumor susceptibility. Proc Natl Acad Sci USA 91: 1589–1593.

22. DarvasiA, SollerM (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141: 1199–1207.

23. BonnerAE, LemonWJ, DevereuxTR, LubetRA, YouM (2004) Molecular profiling of mouse lung tumors: Association with tumor progression, lung development, and human lung adenocarcinomas. Oncogene 23: 1166–1176.

24. MelkamuT, ZhangX, TanJ, ZengY, KassieF (2010) Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis 31: 252–258.

25. Jones-BolinSE, JohanssonE, PalmisanoWA, AndersonMW, WiestJS, et al. (1998) Effect of promoter and intron 2 polymorphisms on murine lung K-ras gene expression. Carcinogenesis 19: 1503–1508.

26. TimofeevaOA, GorshkovaEV, LevashovaZB, KobzevVF, FilipenkoML, et al. (2002) Pulmonary carcinogenesis susceptibility-associated single-nucleotide polymorphisms in K-ras intron 2 affect the binding of factor gata-6 but not gene expression. Mol Biol (Mosk) 36: 817–824.

27. ShimkinMB, StonerGD (1975) Lung tumors in mice: Application to carcinogenesis bioassay. Adv Cancer Res 21: 1–58.

28. BromanKW, WuH, SenS, ChurchillGA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#