#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Determining the Control Circuitry of Redox Metabolism at the Genome-Scale


All heterotrophic organisms must balance the deployment of consumed carbon compounds between growth and the generation of energy. These two competing objectives have been shown, both computationally and experimentally, to exist as the principal dimensions of the function of metabolic networks. Each of these dimensions can also be thought of as the familiar metabolic functions of catabolism, anabolism, and generation of energy. Here we detail how two global transcription factors (TFs), ArcA and Fnr of Escherichia coli that sense redox ratios, act on a genome-wide basis to coordinately regulate these global metabolic functions through transcriptional control of enzyme and transporter levels in changing environments. A model results from the study that shows how global transcription factors regulate global dimensions of metabolism and form a regulatory hierarchy that reflects the structural hierarchy of the metabolic network.


Vyšlo v časopise: Determining the Control Circuitry of Redox Metabolism at the Genome-Scale. PLoS Genet 10(4): e32767. doi:10.1371/journal.pgen.1004264
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004264

Souhrn

All heterotrophic organisms must balance the deployment of consumed carbon compounds between growth and the generation of energy. These two competing objectives have been shown, both computationally and experimentally, to exist as the principal dimensions of the function of metabolic networks. Each of these dimensions can also be thought of as the familiar metabolic functions of catabolism, anabolism, and generation of energy. Here we detail how two global transcription factors (TFs), ArcA and Fnr of Escherichia coli that sense redox ratios, act on a genome-wide basis to coordinately regulate these global metabolic functions through transcriptional control of enzyme and transporter levels in changing environments. A model results from the study that shows how global transcription factors regulate global dimensions of metabolism and form a regulatory hierarchy that reflects the structural hierarchy of the metabolic network.


Zdroje

1. GreenJ, PagetMS (2004) Bacterial redox sensors. Nat Rev Micro 2: 954–966.

2. IuchiS, LinEC (1991) Adaptation of Escherichia coli to respiratory conditions: regulation of gene expression. Cell 66: 5–7.

3. RolfeMD, BeekAT, GrahamAI, TrotterEW, AsifHMS, et al. (2011) Transcript Profiling and Inference of Escherichia coli K-12 ArcA Activity across the Range of Physiologically Relevant Oxygen Concentrations. Journal of Biological Chemistry 286: 10147–10154 doi:10.1074/jbc.M110.211144

4. UndenG, DünnwaldP (2008) The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. Ecosal 79: 4218–4226.

5. ConstantinidouC, HobmanJ, GriffithsL, PatelM, PennC, et al. (2006) A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to nitrate respiration. The Journal of biological chemistry 281: 4802–4815.

6. TrotterEW, RolfeMD, HounslowAM, CravenCJ, WilliamsonMP, et al. (2011) Reprogramming of Escherichia coli K-12 Metabolism during the Initial Phase of Transition from an Anaerobic to a Micro-Aerobic Environment. PLoS ONE 6: e25501 doi:10.1371/journal.pone.0025501.t003

7. IuchiS, LinECC (1993) Adaptation of Escherichia coli to redox environments by gene expression. Mol Microbiol 9: 9–15 doi:10.1111/j.1365-2958.1993.tb01664.x

8. IuchiS, WeinerL (1996) Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. J Biochem 120: 1055–1063.

9. AlexeevaS, HellingwerfK (2003) Requirement of ArcA for Redox Regulation in Escherichia coli under Microaerobic but Not Anaerobic or Aerobic Conditions. Journal of Bacteriology 185 (1) 204–9.

10. Shalel LevanonS, SanK-Y, BennettGN (2005) Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses. Biotechnol Bioeng 89: 556–564 doi:10.1002/bit.20381

11. PartridgeJD, ScottC, TangY, PooleRK, GreenJ (2006) Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions. The Journal of biological chemistry 281: 27806–27815 doi:10.1074/jbc.M603450200

12. MalpicaR, FrancoB, RodriguezC, KwonO, GeorgellisD (2004) Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proceedings of the National Academy of Sciences 101: 13318–13323 doi:10.1073/pnas.0403064101

13. KileyP, BeinertH (1998) Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiology Reviews

14. UndenG, AchebachS, HolighausG (2002) Control of FNR Function of Escherichia coli by O2 and Reducing Conditions. Journal of molecular microbiolog 4 (3) 263–8.

15. AchebachS, SelmerT, UndenG (2005) Properties and significance of apoFNR as a second form of air-inactivated [4Fe-4S]·FNR of Escherichia coli. FEBS Journal 272: 4260–4269 doi:10.1111/j.1742-4658.2005.04840.x

16. ParkDM, AkhtarMS, AnsariAZ, LandickR, KileyPJ (2013) The Bacterial Response Regulator ArcA Uses a Diverse Binding Site Architecture to Regulate Carbon Oxidation Globally. PLoS Genet 9: e1003839 doi:10.1371/journal.pgen.1003839.s017

17. CarlsonR, SriencF (2003) Fundamental Escherichia coli biochemical pathways for biomass and energy production: Identification of reactions. Biotechnol Bioeng 85: 1–19 doi:10.1002/bit.10812

18. SchuetzR, ZamboniN, ZampieriM, HeinemannM, SauerU (2012) Multidimensional Optimality of Microbial Metabolism. Science 336: 597–601 doi:10.1126/science.1216283

19. NoorE, EdenE, MiloR, AlonU (2010) Central Carbon Metabolism as a Minimal Biochemical Walk between Precursors for Biomass and Energy. Molecular Cell 39: 809–820 doi:10.1016/j.molcel.2010.08.031

20. CarlsonR, SriencF (2004) Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states. Biotechnol Bioeng 86: 149–162 doi:10.1002/bit.20044

21. BaileyTL, BodenM, BuskeFA, FrithM, GrantCE, et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic acids research 37: W202–W208 doi:10.1093/nar/gkp335

22. RobisonK, McGuireAM, ChurchGM (1998) A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol 284: 241–254 doi:10.1006/jmbi.1998.2160

23. McGuireAM, De WulfP, ChurchGM, LinECC (1999) A weight matrix for binding recognition by the redox-response regulator ArcA-P of Escherichia coli. Mol Microbiol 32: 219–221 doi:10.1046/j.1365-2958.1999.01347.x

24. Gama-CastroS, SalgadoH, Peralta-GilM, Santos-ZavaletaA, Muniz-RascadoL, et al. (2010) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic acids research 39: D98–D105 Available: http://nar.oxfordjournals.org/content/39/suppl_1/D98.short.

25. MyersKS, YanH, OngIM, ChungD, LiangK, et al. (2013) Genome-scale Analysis of Escherichia coli FNR Reveals Complex Features of Transcription Factor Binding. PLoS Genet 9: e1003565 doi:10.1371/journal.pgen.1003565.s021

26. KeselerIM, Collado-VidesJ, Santos-ZavaletaA, Peralta-GilM, Gama-CastroS, et al. (2010) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic acids research 39: D583–D590 doi:10.1093/nar/gkq1143

27. EstremS, RossW, GaalT, ChenZ, NiuW, et al. (1999) Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase α subunit. Genes & Development 13: 2134–2147.

28. BeckCF, WarrenAJ (1988) Divergent Promoters, a Common Form of Gene Organization. Microbiological reviews 52: 318–326.

29. ChumsakulO, TakahashiH, OshimaT, HishimotoT, KanayaS, et al. (2011) Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Nucleic acids Research 39 (2) 414–28.

30. ClarkDP, CronanJEJr (2005) Two-carbon compounds and fatty acids as carbon sources. Escherichia coli and Salmonella: cellular and molecular biochemistry

31. OrthJD, ConradTM, NaJ, LermanJA, NamH, et al. (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol Syst Biol 7 Available: http://www.nature.com/msb/journal/v7/n1/full/msb201165.html.

32. SauerU (2003) The Soluble and Membrane-bound Transhydrogenases UdhA and PntAB Have Divergent Functions in NADPH Metabolism of Escherichia coli. Journal of Biological Chemistry 279: 6613–6619 doi:10.1074/jbc.M311657200

33. KochanowskiK, VolkmerB, GerosaL, van RijsewijkBRH, SchmidtA, et al. (2013) Functioning of a metabolic flux sensor in Escherichia coli. Proceedings of the National Academy of Sciences 110: 1130–1135.

34. PartridgeJD, SanguinettiG, DibdenDP, RobertsRE, PooleRK, et al. (2007) Transition of Escherichia coli from Aerobic to Micro-aerobic Conditions Involves Fast and Slow Reacting Regulatory Components. Journal of Biological Chemistry 282: 11230–11237 doi:10.1074/jbc.M700728200

35. van Rijsewijk BartRBH, NanchenA, NalletS, KleijnRJ, SauerU (2011) Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Mol Syst Biol 7: 1–12 doi:10.1038/msb.2011.9

36. LermanJA, HydukeDR, LatifH, PortnoyVA, LewisNE, et al. (2012) In silico method for modelling metabolism and gene product expression at genome scale. Nat Comms 3: 929 doi:10.1038/ncomms1928

37. KrulwichTA, SachsG, PadanE (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Micro 9: 330–343 doi:10.1038/nrmicro2549

38. Cosentino LagomarsinoM, JonaP, BassettiB, IsambertH (2007) Hierarchy and feedback in the evolution of the Escherichia coli transcription network. Proceedings of the National Academy of Sciences 104: 5516–5520 doi:10.1073/pnas.0609023104

39. BrowningDF, BusbySJW (2004) The regulation of bacterial transcription initiation. Nat Rev Micro 2: 57–65 doi:10.1038/nrmicro787

40. Seborg DE, Mellichamp DA, Edgar TF, Francis J Doyle I (2010) Process Dynamics and Control. Wiley.

41. PatilK, NielsenH (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proceedings of the National Academy of Sciences 102: 2685–2689.

42. GruningN-M, LehrachH, RalserM (2010) Regulatory crosstalk of the metabolic network. Trends in Biochemical Sciences 35: 220–227 doi:10.1016/j.tibs.2009.12.001

43. SemenzaG (2012) Hypoxia-Inducible Factors in Physiology and Medicine. Cell 148: 399–408.

44. ChoB-K, KnightEM, PalssonBØ (2006) PCR-based tandem epitope tagging system for Escherichia coli genome engineering. Biotechniques 40 (1) 67–72.

45. ChoBK, BarrettCL, KnightEM, ParkYS, PalssonBO (2008) Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli. Proceedings of the National Academy of Sciences 105: 19462–19467 doi:10.1073/pnas.0807227105

46. BostockM, OgievetskyV, HeerJ (2011) Data-Driven Documents 1–9.

47. GourseR, RossW (2000) UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol Microbiol 37 (4) 687–95.

48. SharonE, KalmaY, SharpA, Raveh-SadkaT, LevoM, et al. (2012) Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat Biotechnol 30: 521–530 doi:10.1038/nbt.2205

49. LewisNE, HixsonKK, ConradTM, LermanJA, CharusantiP, et al. (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 6: 390 doi:10.1038/msb.2010.47

50. SchellenbergerJ, QueR, FlemingRMT, ThieleI, OrthJD, et al. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6: 1290–1307 doi:10.1038/nprot.2011.308

51. PerezF, GrangerBE (2007) IPython: A System for Interactive Scientific Computing. Comput Sci Eng 9: 21–29 doi:10.1109/MCSE.2007.53

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#