#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

: Clonal Reinforcement Drives Evolution of a Simple Microbial Community


The variability of natural systems makes it difficult to deduce how organisms' genotypes manifest as phenotypes, and how communities of interacting organisms arise. Using laboratory experimental evolution we can control this variation. We previously showed that a population of E. coli that originated from a single clone and was cultured in the presence of a single limiting resource, evolves into a stable, three-membered community, wherein one clone excretes metabolites that the others utilize as carbon sources. To discern the genetic factors at work in producing this outcome and to illuminate the community's physiology, we sequenced the genomes of the ancestral and evolved clones. We identified in the ancestor mutations that may have predisposed evolution of cross-feeding. We found that the lineages which gave rise to the community diverged early on, and that the numerically dominant lineage that best scavenges limiting glucose does so as a result of adaptive mutations that enhance glucose uptake but favor fermentative over respiratory pathways, resulting in overflow metabolites. Because this clone produces secondary resources that sustain other community members, and because it shares with them only one mutation, we conclude that it is an “engine” generating diversity by creating new niches, but not the occupants themselves.


Vyšlo v časopise: : Clonal Reinforcement Drives Evolution of a Simple Microbial Community. PLoS Genet 10(6): e32767. doi:10.1371/journal.pgen.1004430
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004430

Souhrn

The variability of natural systems makes it difficult to deduce how organisms' genotypes manifest as phenotypes, and how communities of interacting organisms arise. Using laboratory experimental evolution we can control this variation. We previously showed that a population of E. coli that originated from a single clone and was cultured in the presence of a single limiting resource, evolves into a stable, three-membered community, wherein one clone excretes metabolites that the others utilize as carbon sources. To discern the genetic factors at work in producing this outcome and to illuminate the community's physiology, we sequenced the genomes of the ancestral and evolved clones. We identified in the ancestor mutations that may have predisposed evolution of cross-feeding. We found that the lineages which gave rise to the community diverged early on, and that the numerically dominant lineage that best scavenges limiting glucose does so as a result of adaptive mutations that enhance glucose uptake but favor fermentative over respiratory pathways, resulting in overflow metabolites. Because this clone produces secondary resources that sustain other community members, and because it shares with them only one mutation, we conclude that it is an “engine” generating diversity by creating new niches, but not the occupants themselves.


Zdroje

1. MullerHJ (1932) Some genetic aspects of sex. Am Naturalist 66: 118–138.

2. Williams GC (1975) Sex and Evolution. Princeton, NJ: Princeton University Press.

3. HellingRB, VargasCN, AdamsJ (1987) Evolution of Escherichia coli during growth in a constant environment. Genetics 116: 349–358.

4. FerenciT (2008) Bacterial physiology, regulation and mutational adaptation in a chemostat environment. Adv Microb Physiol 53: 169–229.

5. LangGI, RiceDP, HickmanMJ, SodergrenE, WeinstockGM, et al. (2013) Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500: 571–574.

6. Le GacM, BrazasMD, BertrandM, TyermanJG, SpencerCC, et al. (2008) Metabolic changes associated with adaptive diversification in Escherichia coli. Genetics 178: 1049–1060.

7. SpencerCC, BertrandM, TravisanoM, DoebeliM (2007) Adaptive diversification in genes that regulate resource use in Escherichia coli. PLoS Genet 3: e15.

8. RozenDE, LenskiRE (2000) Long-Term Experimental Evolution in Escherichia coli. VIII. Dynamics of a Balanced Polymorphism. Am Nat 155: 24–35.

9. TurnerPE, SouzaV, LenskiRE (1996) Tests of Ecological Mechanisms Promoting the Stable Coexistence of Two Bacterial Genotypes. Ecology 77: 2119–2129.

10. RaineyPB, TravisanoM (1998) Adaptive radiation in a heterogeneous environment. Nature 394: 69–72.

11. HerronMD, DoebeliM (2013) Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol 11: e1001490.

12. ZhongS, KhodurskyA, DykhuizenDE, DeanAM (2004) Evolutionary genomics of ecological specialization. Proc Natl Acad Sci U S A 101: 11719–11724.

13. RaineyPB, BucklingA, KassenR, TravisanoM (2000) The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol Evol 15: 243–247.

14. Rosenzweig F, Sherlock G (2011) Through a Glass, Clearly: Experimental Evolution as a Window on Adaptive Genome Evolution. In: Garland JT, Rose MR, editors. EXPERIMENTAL EVOLUTION: Concepts, Methods, and Applications of Selection Experiments: University of California Press.

15. NovakM, PfeifferT, LenskiRE, SauerU, BonhoefferS (2006) Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. Am Nat 168: 242–251.

16. Le GacM, PlucainJ, HindreT, LenskiRE, SchneiderD (2012) Ecological and evolutionary dynamics of coexisting lineages during a long-term experiment with Escherichia coli. Proc Natl Acad Sci U S A 109: 9487–9492.

17. RozenDE, PhilippeN, Arjan de VisserJ, LenskiRE, SchneiderD (2009) Death and cannibalism in a seasonal environment facilitate bacterial coexistence. Ecol Lett 12: 34–44.

18. Monod J (1942) Recherche sur la croissance des cultures bacteriennes. Paris: Hermann et Cie.

19. Kubitschek HE (1970) Introduction to Research with Continuous Cultures. Englewood Cliffs, N.J: Prentice-Hall.

20. Hutchinson GE (1965) The Ecological Theater and the Evolutionary Play: Yale University Press.

21. WengerJW, PiotrowskiJ, NagarajanS, ChiottiK, SherlockG, et al. (2011) Hunger artists: yeast adapted to carbon limitation show trade-offs under carbon sufficiency. PLoS Genet 7: e1002202.

22. KvitekDJ, SherlockG (2011) Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genet 7: e1002056.

23. NovickA, SzilardL (1950) Experiments with the Chemostat on spontaneous mutations of bacteria. Proc Natl Acad Sci U S A 36: 708–719.

24. AtwoodKC, SchneiderLK, RyanFJ (1951) Periodic Selection in Escherichia coli. Proc Natl Acad Sci U S A 37: 146–155.

25. KaoKC, SherlockG (2008) Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet 40: 1499–1504.

26. de VisserJA, RozenDE (2006) Clonal interference and the periodic selection of new beneficial mutations in Escherichia coli. Genetics 172: 2093–2100.

27. GerrishPJ, LenskiRE (1998) The fate of competing beneficial mutations in an asexual population. Genetica 102–103: 127–144.

28. Boucher DH, ed. (1985) The Biology of Mutualism. NY: Oxford University Press.

29. Thompson JN (2005) The geographic mosaic of coevolution. Chicago, Illinois: University of Chicago Press.

30. KinnersleyMA, HolbenWE, RosenzweigF (2009) E Unibus Plurum: genomic analysis of an experimentally evolved polymorphism in Escherichia coli. PLoS Genet 5: e1000713.

31. RosenzweigRF, SharpRR, TrevesDS, AdamsJ (1994) Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics 137: 903–917.

32. BarrickJE, YuDS, YoonSH, JeongH, OhTK, et al. (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461: 1243–1247.

33. NghiemY, CabreraM, CupplesCG, MillerJH (1988) The mutY gene: a mutator locus in Escherichia coli that generates G.C----T.A transversions. Proc Natl Acad Sci U S A 85: 2709–2713.

34. FerenciT (2003) What is driving the acquisition of mutS and rpoS polymorphisms in Escherichia coli? Trends Microbiol 11: 457–461.

35. Notley-McRobbL, FerenciT (1999) The generation of multiple co-existing mal-regulatory mutations through polygenic evolution in glucose-limited populations of Escherichia coli. Environ Microbiol 1: 45–52.

36. TrevesDS, ManningS, AdamsJ (1998) Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol Biol Evol 15: 789–797.

37. MaharjanRP, GaffeJ, PlucainJ, SchliepM, WangL, et al. (2013) A case of adaptation through a mutation in a tandem duplication during experimental evolution in Escherichia coli. BMC Genomics 14: 441.

38. MaharjanR, SeetoS, Notley-McRobbL, FerenciT (2006) Clonal adaptive radiation in a constant environment. Science 313: 514–517.

39. LinJC, SinghRR, CoxDL (2008) Theoretical study of DNA damage recognition via electron transfer from the [4Fe-4S] complex of MutY. Biophysical journal 95: 3259–3268.

40. Notley-McRobbL, KingT, FerenciT (2002) rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J Bacteriol 184: 806–811.

41. Notley-McRobbL, PintoR, SeetoS, FerenciT (2002) Regulation of mutY and nature of mutator mutations in Escherichia coli populations under nutrient limitation. J Bacteriol 184: 739–745.

42. CoxEC (1976) Bacterial mutator genes and the control of spontaneous mutation. Annu Rev Genet 10: 135–156.

43. CoxEC, GibsonTC (1974) Selection for high mutation rates in chemostats. Genetics 77: 169–184.

44. DesaiMM, FisherDS (2011) The balance between mutators and nonmutators in asexual populations. Genetics 188: 997–1014.

45. GibsonTC, ScheppeML, CoxEC (1970) Fitness of an Escherichia coli mutator gene. Science 169: 686–688.

46. de VisserJA (2002) The fate of microbial mutators. Microbiology 148: 1247–1252.

47. MaharjanRP, LiuB, LiY, ReevesPR, WangL, et al. (2013) Mutation accumulation and fitness in mutator subpopulations of Escherichia coli. Biol Lett 9: 20120961.

48. Maloy SR, Stewart VJ, Taylor RK (1996) Genetic analysis of pathogenic bacteria: A laboratory manual: Cold Spring Harbor Laboratory Press.

49. RaghavanR, GroismanEA, OchmanH (2011) Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res 21: 1487–1497.

50. ZhangA, WassarmanKM, RosenowC, TjadenBC, StorzG, et al. (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50: 1111–1124.

51. KurlandzkaA, RosenzweigRF, AdamsJ (1991) Identification of adaptive changes in an evolving population of Escherichia coli: the role of changes with regulatory and highly pleiotropic effects. Mol Biol Evol 8: 261–281.

52. Notley-McRobbL, FerenciT (1999) Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations. Environ Microbiol 1: 33–43.

53. JolyN, BohmA, BoosW, RichetE (2004) MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator malt by antagonizing inducer binding. J Biol Chem 279: 33123–33130.

54. KuhnauS, ReyesM, SievertsenA, ShumanHA, BoosW (1991) The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations. J Bacteriol 173: 2180–2186.

55. BukauB, EhrmannM, BoosW (1986) Osmoregulation of the maltose regulon in Escherichia coli. J Bacteriol 166: 884–891.

56. BohmA, DiezJ, DiederichsK, WelteW, BoosW (2002) Structural model of MalK, the ABC subunit of the maltose transporter of Escherichia coli: implications for mal gene regulation, inducer exclusion, and subunit assembly. J Biol Chem 277: 3708–3717.

57. NotleyL, FerenciT (1995) Differential expression of mal genes under cAMP and endogenous inducer control in nutrient-stressed Escherichia coli. Mol Microbiol 16: 121–129.

58. DeckerK, PeistR, ReidlJ, KossmannM, BrandB, et al. (1993) Maltose and maltotriose can be formed endogenously in Escherichia coli from glucose and glucose-1-phosphate independently of enzymes of the maltose system. J Bacteriol 175: 5655–5665.

59. RaibaudO, Vidal-IngigliardiD, RichetE (1989) A complex nucleoprotein structure involved in activation of transcription of two divergent Escherichia coli promoters. J Mol Biol 205: 471–485.

60. RaibaudO, RichetE (1987) Maltotriose is the inducer of the maltose regulon of Escherichia coli. J Bacteriol 169: 3059–3061.

61. VogelJ, LuisiBF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9: 578–589.

62. Valentin-HansenP, EriksenM, UdesenC (2004) The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol 51: 1525–1533.

63. SobreroP, ValverdeC (2012) The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol 38: 276–299.

64. MufflerA, FischerD, Hengge-AronisR (1996) The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev 10: 1143–1151.

65. SeetoS, Notley-McRobbL, FerenciT (2004) The multifactorial influences of RpoS, Mlc and cAMP on ptsG expression under glucose-limited and anaerobic conditions. Res Microbiol 155: 211–215.

66. Notley-McRobbL, SeetoS, FerenciT (2003) The influence of cellular physiology on the initiation of mutational pathways in Escherichia coli populations. Proc Biol Sci 270: 843–848.

67. MaharjanR, ZhouZ, RenY, LiY, GaffeJ, et al. (2010) Genomic identification of a novel mutation in hfq that provides multiple benefits in evolving glucose-limited populations of Escherichia coli. J Bacteriol 192: 4517–4521.

68. MaharjanRP, FerenciT (2013) Epistatic interactions determine the mutational pathways and coexistence of lineages in clonal Escherichia coli populations. Evolution 67: 2762–2768.

69. PatelHV, VyasKA, MattooRL, SouthworthM, PerlerFB, et al. (2006) Properties of the C-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. J Biol Chem 281: 17579–17587.

70. PostmaPW, LengelerJW, JacobsonGR (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57: 543–594.

71. ChauvinF, FomenkovA, JohnsonCR, RosemanS (1996) The N-terminal domain of Escherichia coli enzyme I of the phosphoenolpyruvate/glycose phosphotransferase system: molecular cloning and characterization. Proc Natl Acad Sci U S A 93: 7028–7031.

72. SeokYJ, LeeBR, ZhuPP, PeterkofskyA (1996) Importance of the carboxyl-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system for phosphoryl donor specificity. Proc Natl Acad Sci U S A 93: 347–351.

73. TeplyakovA, LimK, ZhuPP, KapadiaG, ChenCC, et al. (2006) Structure of phosphorylated enzyme I, the phosphoenolpyruvate:sugar phosphotransferase system sugar translocation signal protein. Proc Natl Acad Sci U S A 103: 16218–16223.

74. Garcia-AllesLF, AlfonsoI, ErniB (2003) Enzyme I of the phosphotransferase system: induced-fit protonation of the reaction transition state by Cys-502. Biochemistry 42: 4744–4750.

75. NamTW, ChoSH, ShinD, KimJH, JeongJY, et al. (2001) The Escherichia coli glucose transporter enzyme IICB(Glc) recruits the global repressor Mlc. Embo J 20: 491–498.

76. LeeSJ, BoosW, BoucheJP, PlumbridgeJ (2000) Signal transduction between a membrane-bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli. Embo J 19: 5353–5361.

77. ZeppenfeldT, LarischC, LengelerJW, JahreisK (2000) Glucose transporter mutants of Escherichia coli K-12 with changes in substrate recognition of IICB(Glc) and induction behavior of the ptsG gene. J Bacteriol 182: 4443–4452.

78. DeckerK, PlumbridgeJ, BoosW (1998) Negative transcriptional regulation of a positive regulator: the expression of malT, encoding the transcriptional activator of the maltose regulon of Escherichia coli, is negatively controlled by Mlc. Mol Microbiol 27: 381–390.

79. FoxDK, MeadowND, RosemanS (1986) Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system. J Biol Chem 261: 13498–13503.

80. FereaTL, BotsteinD, BrownPO, RosenzweigRF (1999) Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci U S A 96: 9721–9726.

81. KotlarzD, GarreauH, BucH (1975) Regulation of the amount and of the activity of phosphofructokinases and pyruvate kinases in Escherichia coli. Biochim Biophys Acta 381: 257–268.

82. BabulJ (1978) Phosphofructokinases from Escherichia coli. Purification and characterization of the nonallosteric isozyme. J Biol Chem 253: 4350–4355.

83. NobelmannB, LengelerJW (1996) Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. J Bacteriol 178: 6790–6795.

84. ZhongS, MillerSP, DykhuizenDE, DeanAM (2009) Transcription, translation, and the evolution of specialists and generalists. Mol Biol Evol 26: 2661–2678.

85. ZhongS, KhodurskyA, DykhuizenDE, DeanAM (2004) Evolutionary genomics of ecological specialization. Proc Natl Acad Sci U S A 101: 11719–11724.

86. MoritaT, KawamotoH, MizotaT, InadaT, AibaH (2004) Enolase in the RNA degradosome plays a crucial role in the rapid decay of glucose transporter mRNA in the response to phosphosugar stress in Escherichia coli. Mol Microbiol 54: 1063–1075.

87. VanderpoolCK (2007) Physiological consequences of small RNA-mediated regulation of glucose-phosphate stress. Curr Opin Microbiol 10: 146–151.

88. MoritaT, MakiK, AibaH (2005) RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 19: 2176–2186.

89. VanderpoolCK, GottesmanS (2004) Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol Microbiol 54: 1076–1089.

90. IkedaY, YagiM, MoritaT, AibaH (2011) Hfq binding at RhlB-recognition region of RNase E is crucial for the rapid degradation of target mRNAs mediated by sRNAs in Escherichia coli. Mol Microbiol 79: 419–432.

91. GonidakisS, FinkelSE, LongoVD (2010) Genome-wide screen identifies Escherichia coli TCA-cycle-related mutants with extended chronological lifespan dependent on acetate metabolism and the hypoxia-inducible transcription factor ArcA. Aging Cell 9: 868–881.

92. LiM, HoPY, YaoS, ShimizuK (2006) Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments. J Biotechnol 122: 254–266.

93. Abdel-HamidAM, AttwoodMM, GuestJR (2001) Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology 147: 1483–1498.

94. BlaschkowskiHP, NeuerG, Ludwig-FestlM, KnappeJ (1982) Routes of flavodoxin and ferredoxin reduction in Escherichia coli. CoA-acylating pyruvate: flavodoxin and NADPH: flavodoxin oxidoreductases participating in the activation of pyruvate formate-lyase. Eur J Biochem 123: 563–569.

95. EreminaNS, YampolskayaTA, AltmanIB, MashkoSV, StoynovaNV (2010) Overexpression of ydbK-encoding Putative Pyruvate Synthase Improves L-valine Production and Aerobic Growth on Ethanol Media by an Escherichia coli Strain Carrying an Oxygen-Resistant Alcohol Dehydrogenase. J Microbial Biochem Technol 2: 077–083.

96. AkhtarMK, JonesPR (2009) Construction of a synthetic YdbK-dependent pyruvate:H2 pathway in Escherichia coli BL21(DE3). Metab Eng 11: 139–147.

97. SawersG, HesslingerC, MullerN, KaiserM (1998) The glycyl radical enzyme TdcE can replace pyruvate formate-lyase in glucose fermentation. J Bacteriol 180: 3509–3516.

98. ReizerJ, ReizerA, SaierMHJr (1995) Novel phosphotransferase system genes revealed by bacterial genome analysis–a gene cluster encoding a unique Enzyme I and the proteins of a fructose-like permease system. Microbiology 141(Pt 4): 961–971.

99. PecherA, BlaschkowskiHP, KnappeK, BockA (1982) Expression of pyruvate formate-lyase of Escherichia coli from the cloned structural gene. Arch Microbiol 132: 365–371.

100. de GraefMR, AlexeevaS, SnoepJL, Teixeira de MattosMJ (1999) The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181: 2351–2357.

101. KnappeJ, SawersG (1990) A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol Rev 6: 383–398.

102. SawersG, BockA (1989) Novel transcriptional control of the pyruvate formate-lyase gene: upstream regulatory sequences and multiple promoters regulate anaerobic expression. J Bacteriol 171: 2485–2498.

103. AlexeevaS, de KortB, SawersG, HellingwerfKJ, de MattosMJ (2000) Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli. J Bacteriol 182: 4934–4940.

104. CarlsonRP (2007) Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Bioinformatics 23: 1258–1264.

105. SawersG, WatsonG (1998) A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol Microbiol 29: 945–954.

106. VemuriGN, AltmanE, SangurdekarDP, KhodurskyAB, EitemanMA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72: 3653–3661.

107. CozzoneAJ, El-MansiM (2005) Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli. J Mol Microbiol Biotechnol 9: 132–146.

108. El-MansiM, CozzoneAJ, ShiloachJ, EikmannsBJ (2006) Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate. Curr Opin Microbiol 9: 173–179.

109. el-MansiEM, NimmoHG, HolmsWH (1986) Pyruvate metabolism and the phosphorylation state of isocitrate dehydrogenase in Escherichia coli. J Gen Microbiol 132: 797–806.

110. LiM, YaoS, ShimizuK (2007) Effect of poxB gene knockout on metabolism in Escherichia coli based on growth characteristics and enzyme activities. World Journal of Microbiology and Biotechnology 23: 573–580.

111. CarlsonRP (2009) Decomposition of complex microbial behaviors into resource-based stress responses. Bioinformatics 25: 90–97.

112. WeidnerU, GeierS, PtockA, FriedrichT, LeifH, et al. (1993) The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol 233: 109–122.

113. ElvinCM, HardyCM, RosenbergH (1985) Pi exchange mediated by the GlpT-dependent sn-glycerol-3-phosphate transport system in Escherichia coli. J Bacteriol 161: 1054–1058.

114. DeutscherJ, FranckeC, PostmaPW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70: 939–1031.

115. NovotnyMJ, FredericksonWL, WaygoodEB, SaierMHJr (1985) Allosteric regulation of glycerol kinase by enzyme IIIglc of the phosphotransferase system in Escherichia coli and Salmonella typhimurium. J Bacteriol 162: 810–816.

116. ZwaigN, LinEC (1966) Feedback inhibition of glycerol kinase, a catabolic enzyme in Escherichia coli. Science 153: 755–757.

117. de BoerM, BroekhuizenCP, PostmaPW (1986) Regulation of glycerol kinase by enzyme IIIGlc of the phosphoenolpyruvate:carbohydrate phosphotransferase system. J Bacteriol 167: 393–395.

118. LinEC (1976) Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30: 535–578.

119. SubediKP, KimI, KimJ, MinB, ParkC (2008) Role of GldA in dihydroxyacetone and methylglyoxal metabolism of Escherichia coli K12. FEMS Microbiol Lett 279: 180–187.

120. ApplebeeMK, JoyceAR, ConradTM, PettigrewDW, PalssonBO (2011) Functional and metabolic effects of adaptive glycerol kinase (GLPK) mutants in Escherichia coli. J Biol Chem 286: 23150–23159.

121. LindnerSN, MeiswinkelTM, PanhorstM, YounJW, WiefelL, et al. (2012) Glycerol-3-phosphatase of Corynebacterium glutamicum. J Biotechnol 159: 216–224.

122. RozenDE, SchneiderD, LenskiRE (2005) Long-term experimental evolution in Escherichia coli. XIII. Phylogenetic history of a balanced polymorphism. J Mol Evol 61: 171–180.

123. LevineJM, HilleRisLambersJ (2009) The importance of niches for the maintenance of species diversity. Nature 461: 254–257.

124. MaharjanRP, FerenciT, ReevesPR, LiY, LiuB, et al. (2012) The multiplicity of divergence mechanisms in a single evolving population. Genome Biol 13: R41.

125. de MazancourtC, SchwartzMW (2010) A resource ratio theory of cooperation. Ecol Lett 13: 349–359.

126. UpdegroveTB, WartellRM (2011) The influence of Escherichia coli Hfq mutations on RNA binding and sRNA*mRNA duplex formation in rpoS riboregulation. Biochim Biophys Acta 1809: 532–540.

127. UpdegroveT, WilfN, SunX, WartellRM (2008) Effect of Hfq on RprA-rpoS mRNA pairing: Hfq-RNA binding and the influence of the 5′ rpoS mRNA leader region. Biochemistry 47: 11184–11195.

128. KoYF, BentleyWE, WeigandWA (1994) A metabolic model of cellular energetics and carbon flux during aerobic Escherichia coli fermentation. Biotechnol Bioeng 43: 847–855.

129. van HoekMJ, MerksRM (2012) Redox balance is key to explaining full vs. partial switching to low-yield metabolism. BMC Syst Biol 6: 22.

130. Tempest D, Neijssel O (1987) Growth Yield and Energy Distribution. In: Neidhardt F, editor. Escherichia coli and Salmonella typhimurium Washington DC: American Society for Microbiology. pp. 797–806.

131. NegreteA, MajdalaniN, PhueJN, ShiloachJ (2013) Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS. N Biotechnol 30: 269–273.

132. KawamotoH, KoideY, MoritaT, AibaH (2006) Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol Microbiol 61: 1013–1022.

133. PiotrowskiJS, NagarajanS, KrollE, StanberyA, ChiottiKE, et al. (2012) Different selective pressures lead to different genomic outcomes as newly-formed hybrid yeasts evolve. BMC Evol Biol 12: 46.

134. GauseGF (1932) Experimental studies on the struggle for existence: 1. Mixed population of two species of yeast. Journal of Experimental Biology 9: 389–402.

135. HardinG (1960) The competitive exclusion principle. Science 131: 1292–1297.

136. CrowJF, KimuraK (1965) Evolution in asexual populations. Am Nat 99: 439–450.

137. JezequelN, LagomarsinoMC, HeslotF, ThomenP (2013) Long-term diversity and genome adaptation of Acinetobacter baylyi in a minimal-medium chemostat. Genome Biol Evol 5: 87–97.

138. MorrisBE, HennebergerR, HuberH, Moissl-EichingerC (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37: 384–406.

139. SeyfriedTN, SheltonLM (2010) Cancer as a metabolic disease. Nutrition & metabolism 7: 7.

140. VaughanRA, Garcia-SmithR, TrujilloKA, BisoffiM (2013) Tumor necrosis factor alpha increases aerobic glycolysis and reduces oxidative metabolism in prostate epithelial cells. Prostate 73: 1538–1546.

141. CiofuO, MandsbergLF, BjarnsholtT, WassermannT, HoibyN (2010) Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology 156: 1108–1119.

142. QinX, ZerrDM, McNuttMA, BerryJE, BurnsJL, et al. (2012) Pseudomonas aeruginosa syntrophy in chronically colonized airways of cystic fibrosis patients. Antimicrob Agents Chemother 56: 5971–5981.

143. HellingRB, KinneyT, AdamsJ (1981) The maintenance of Plasmid-containing organisms in populations of Escherichia coli. J Gen Microbiol 123: 129–141.

144. SarkarS, MaWT, SandriGH (1992) On fluctuation analysis: a new, simple and efficient method for computing the expected number of mutants. Genetica 85: 173–179.

145. TusherVG, TibshiraniR, ChuG (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116–5121.

146. SynCK, SwarupS (2000) A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. Anal Biochem 278: 86–90.

147. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.

148. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.

149. AdamsJ, KinneyT, ThompsonS, RubinL, HellingRB (1979) Frequency-Dependent Selection for Plasmid-Containing Cells of ESCHERICHIA COLI. Genetics 91: 627–637.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#