#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Speciation and Introgression between and


While speciation is often depicted as a simple population split, in many cases it is likely more complex. Recently, whole genome sequencing and computational methods to interpret patterns of genomic variation have facilitated the inference of complex speciation histories. We present and analyze genomic data to infer the speciation history of an ecological and evolutionary model species pair - Mimulus guttatus/M. nasutus. We infer that M. nasutus split from a central Californian M. guttatus population approximately 200–500 kya, roughly corresponding to M. nasutus’ shift to self-fertilization. We document ongoing gene flow between these species where they co-occur. Finally, we present patterns genomic divergence suggesting that natural selection disfavors introgression of M. nasutus ancestry in M. guttatus.


Vyšlo v časopise: Speciation and Introgression between and. PLoS Genet 10(6): e32767. doi:10.1371/journal.pgen.1004410
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004410

Souhrn

While speciation is often depicted as a simple population split, in many cases it is likely more complex. Recently, whole genome sequencing and computational methods to interpret patterns of genomic variation have facilitated the inference of complex speciation histories. We present and analyze genomic data to infer the speciation history of an ecological and evolutionary model species pair - Mimulus guttatus/M. nasutus. We infer that M. nasutus split from a central Californian M. guttatus population approximately 200–500 kya, roughly corresponding to M. nasutus’ shift to self-fertilization. We document ongoing gene flow between these species where they co-occur. Finally, we present patterns genomic divergence suggesting that natural selection disfavors introgression of M. nasutus ancestry in M. guttatus.


Zdroje

1. CahillJA, GreenRE, FultonTL, StillerM, JayF, et al. (2013) Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genet 9: e1003345.

2. FrantzLA, SchraiberJG, MadsenO, MegensHJ, BosseM, et al. (2013) Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biol 14: R107.

3. GreenRE, KrauseJ, BriggsAW, MaricicT, StenzelU, et al. (2010) A draft sequence of the Neandertal genome. Science 328: 710–722.

4. MillerW, SchusterSC, WelchAJ, RatanA, Bedoya-ReinaOC, et al. (2012) Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc Natl Acad Sci U S A 109: E2382–2390.

5. Heliconius GenomeC (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487: 94–98.

6. WuCA, LowryDB, CooleyAM, WrightKM, LeeYW, et al. (2008) Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity (Edinb) 100: 220–230.

7. Grant V (1971) Plant Speciation. New York: Columbia University Press.

8. KayKM, SchemskeDW (2003) Pollinator assemblages and visitation rates for 11 species of neotropical Costus (Costaceae). Biotropica 35: 198–207.

9. SchemskeDW, BradshawHDJr (1999) Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc Natl Acad Sci U S A 96: 11910–11915.

10. BakerHG (1959) Reproductive methods as factors in speciation. Cold Spring Harbor Symposium on Quantitative Biology 24: 177–191.

11. GoldbergEE, IgicB (2012) Tempo and mode in plant breeding system evolution. Evolution 66: 3701–3709.

12. WrightSI, KaliszS, SlotteT (2013) Evolutionary consequences of self-fertilization in plants. Proc Biol Sci 280: 20130133.

13. CharlesworthD, WrightSI (2001) Breeding systems and genome evolution. Curr Opin Genet Dev 11: 685–690.

14. NordborgM (2000) Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics 154: 923–929.

15. GleminS, BazinE, CharlesworthD (2006) Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc Biol Sci 273: 3011–3019.

16. LefflerEM, BullaugheyK, MatuteDR, MeyerWK, SegurelL, et al. (2012) Revisiting an old riddle: what determines genetic diversity levels within species? PLoS Biol 10: e1001388.

17. HazzouriKM, EscobarJS, NessRW, Killian NewmanL, RandleAM, et al. (2013) Comparative population genomics in Collinsia sister species reveals evidence for reduced effective population size, relaxed selection, and evolution of biased gene conversion with an ongoing mating system shift. Evolution 67: 1263–1278.

18. NessRW, SiolM, BarrettSC (2012) Genomic consequences of transitions from cross- to self-fertilization on the efficacy of selection in three independently derived selfing plants. BMC Genomics 13: 611.

19. QiuS, ZengK, SlotteT, WrightS, CharlesworthD (2011) Reduced efficacy of natural selection on codon usage bias in selfing Arabidopsis and Capsella species. Genome Biol Evol 3: 868–880.

20. BrandvainY, SlotteT, HazzouriKM, WrightSI, CoopG (2013) Genomic identification of founding haplotypes reveals the history of the selfing species Capsella rubella. PLoS Genet 9: e1003754.

21. RitlandK (1990) Inferences about inbreeding depression based on changes of the inbreeding coefficient. Evolution 44: 1230–1241.

22. AwadallaP, RitlandK (1997) Microsatellite variation and evolution in the Mimulus guttatus species complex with contrasting mating systems. Mol Biol Evol 14: 1023–1034.

23. WillisJH (1993) Partial self-fertilization and inbreeding depression in 2 populations of Mimulus guttatus. Heredity (Edinb) 71: 145–154.

24. MartinNH, WillisJH (2007) Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species. Evolution 61: 68–82.

25. KiangYT, HamrickJL (1978) Ecological adaptation and reproductive isolation in the Mimulus guttatus - M. nasutus complex. American Midland Naturalist 100: 269–276.

26. DiazA, MacNairMR (1999) Pollen tube competition as a mechanism of prezygotic reproductive isolation between Mimulus nasutus. American Journal of Botany 144: 471–478.

27. VickeryRK (1964) Barriers to gene exchange between members of the Mimulus guttatus complex (Scrophulariaceae). Evolution 18: 52–69.

28. CaseAL, WillisJH (2008) Hybrid male sterility in Mimulus (Phrymaceae) is associated with a geographically restricted mitochondrial rearrangement. Evolution 62: 1026–1039.

29. SweigartAL, MasonAR, WillisJH (2007) Natural variation for a hybrid incompatibility between two species of Mimulus. Evolution 61: 141–151.

30. SweigartAL, WillisJH (2003) Patterns of nucleotide diversity in two species of Mimulus are affected by mating system and asymmetric introgression. Evolution 57: 2490–2506.

31. ModliszewskiJL, WillisJH (2012) Allotetraploid Mimulus sookensis are highly interfertile despite independent origins. Mol Ecol 21: 5280–5298.

32. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.

33. LunterG, GoodsonM (2011) Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res 21: 936–939.

34. HudsonRR, KreitmanM, AguadeM (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116: 153–159.

35. OssowskiS, SchneebergerK, Lucas-LledoJI, WarthmannN, ClarkRM, et al. (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327: 92–94.

36. LiH, DurbinR (2011) Inference of human population history from individual whole-genome sequences. Nature 475: 493–496.

37. PtakSE, PrzeworskiM (2002) Evidence for population growth in humans is confounded by fine-scale population structure. Trends Genet 18: 559–563.

38. StadlerT, HauboldB, MerinoC, StephanW, PfaffelhuberP (2009) The impact of sampling schemes on the site frequency spectrum in nonequilibrium subdivided populations. Genetics 182: 205–216.

39. PenningsPS, KryazhimskiyS, WakeleyJ (2014) Loss and recovery of genetic diversity in adapting populations of HIV. PLoS Genet 10: e1004000.

40. SongYS, SteinruckenM (2012) A simple method for finding explicit analytic transition densities of diffusion processes with general diploid selection. Genetics 190: 1117–1129.

41. PickrellJK, PritchardJK (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8: e1002967.

42. DurandEY, PattersonN, ReichD, SlatkinM (2011) Testing for ancient admixture between closely related populations. Mol Biol Evol 28: 2239–2252.

43. Wilkinson-HerbotsHM (2012) The distribution of the coalescence time and the number of pairwise nucleotide differences in a model of population divergence or speciation with an initial period of gene flow. Theor Popul Biol 82: 92–108.

44. HellenthalG, BusbyGBJ, BandG, WilsonJF, CapelliC, et al. (2014) A genetic atlas of human admixture history. Science 343: 747–751.

45. GravelS (2012) Population genetics models of local ancestry. Genetics 191: 607–619.

46. NachmanMW, PayseurBA (2012) Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Philos Trans R Soc Lond B Biol Sci 367: 409–421.

47. HudsonRR (1991) Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary Biology 7: 1–44.

48. CharlesworthB (1998) Measures of divergence between populations and the effect of forces that reduce variability. Mol Biol Evol 15: 538–543.

49. NoorMA, BennettSM (2009) Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species. Heredity (Edinb) 103: 439–444.

50. BirkyCWJr, WalshJB (1988) Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci U S A 85: 6414–6418.

51. GuoYL, BechsgaardJS, SlotteT, NeufferB, LascouxM, et al. (2009) Recent speciation of Capsella rubella from Capsella grandiflora, associated with loss of self-incompatibility and an extreme bottleneck. Proc Natl Acad Sci U S A 106: 5246–5251.

52. FoxeJP, SlotteT, StahlEA, NeufferB, HurkaH, et al. (2009) Recent speciation associated with the evolution of selfing in Capsella. Proc Natl Acad Sci U S A 106: 5241–5245.

53. GrossenbacherDL, VelozSD, SextonJP (2014) Niche and range size patterns suggest that tpeciation begins in small, ecologically diverged populations in North American Monkeyflowers (Mimulus spp.). Evolution 68: 1270–1280 DOI: 10.1111/evo.12355

54. AnackerBL, StraussSY (2014) The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc Biol Sci 281: 20132980.

55. SlotteT, HazzouriKM, AgrenJA, KoenigD, MaumusF, et al. (2013) The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat Genet 45: 831–835.

56. TangC, ToomajianC, Sherman-BroylesS, PlagnolV, GuoYL, et al. (2007) The evolution of selfing in Arabidopsis thaliana. Science 317: 1070–1072.

57. KochM, HauboldB, Mitchell-OldsT (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am J Bot 88: 534–544.

58. PollakE (1987) On the theory of partially inbreeding finite populations. I. Partial selfing. Genetics 117: 353–360.

59. NordborgM, DonnellyP (1997) The coalescent process with selfing. Genetics 146: 1185–1195.

60. CutterAD, PayseurBA (2013) Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet 14: 262–274.

61. CutterAD, PayseurBA (2003) Selection at linked sites in the partial selfer Caenorhabditis elegans. Mol Biol Evol 20: 665–673.

62. AndersenEC, GerkeJP, ShapiroJA, CrissmanJR, GhoshR, et al. (2012) Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat Genet 44: 285–290.

63. McVeanGA, CharlesworthB (2000) The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics 155: 929–944.

64. KaplanNL, HudsonRR, LangleyCH (1989) The “hitchhiking effect” revisited. Genetics 123: 887–899.

65. CharlesworthB, MorganMT, CharlesworthD (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134: 1289–1303.

66. LynchM, ConeryJ, BürgerR (1995) Mutation accumulation and the extinction of small populations. American Naturalist 146: 489–518.

67. ArnaudJ, FénartS, CordellierM, CuguenJ (2010) Populations of weedy crop–wild hybrid beets show contrasting variation in mating system and population genetic structure. Evolutionary applications 2: 305–318.

68. GoldbergEE, KohnJR, LandeR, RobertsonKA, SmithSA, et al. (2010) Species selection maintains self-incompatibility. Science 330: 493–495.

69. TakebayashiN, MorrellPL (2001) Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. American Journal of Botany 88: 1143–1150.

70. MartinNH (2004) Flower size preferences of the honeybee (Apis mellifera) foraging on Mimulus guttatus (Scrophulariaceae). Evolutionary Ecology Research 6: 777–782.

71. MollerAP (1995) Bumblebee preference for symmetrical flowers. Proc Natl Acad Sci U S A 92: 2288–2292.

72. RobertsonAW, MacnairMR (1995) The effects of floral display size on pollinator service to individual flowers of Myosotis and Mimulus. Oikos 72: 106–114.

73. MakinoTT, OhashiK, SakaiS (2007) How do floral display size and the density of surrounding flowers influence the likelihood of bumble bee revisitation to a plant? Functional Ecology 21: 87–95.

74. Palma-SilvaC, WendtT, PinheiroF, BarbaraT, FayMF, et al. (2011) Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Mol Ecol 20: 3185–3201.

75. RuhsamM, HollingsworthPM, EnnosRA (2011) Early evolution in a hybrid swarm between outcrossing and selfing lineages in Geum. Heredity (Edinb) 107: 246–255.

76. RuhsamM, HollingsworthPM, EnnosRA (2013) Patterns of mating, generation of diversity, and fitness of offspring in a Geum hybrid swarm. Evolution 67: 2728–2740.

77. ViaS (2009) Natural selection in action during speciation. Proc Natl Acad Sci U S A 106: 9939–9946.

78. TurnerTL, HahnMW, NuzhdinSV (2005) Genomic islands of speciation in Anopheles gambiae. PLoS Biol 3: 1572–1578.

79. GeraldesA, BassetP, SmithK, NachmanMW (2011) Higher differentiation among subspecies of the house mouse (Mus musculus) in genomic regions with low recombination. Molecular Ecology 10: 4722–4736.

80. BartonN (1983) Multilocus clines. Evolution 37: 454–471.

81. KruukLE, BairdSJ, GaleKS, BartonNH (1999) A comparison of multilocus clines maintained by environmental adaptation or by selection against hybrids. Genetics 153: 1959–1971.

82. StevisonLS, HoehnKB, NoorMA (2011) Effects of inversions on within- and between-species recombination and divergence. Genome Biol Evol 3: 830–841.

83. McGaughSE, NoorMA (2012) Genomic impacts of chromosomal inversions in parapatric Drosophila species. Philos Trans R Soc Lond B Biol Sci 367: 422–429.

84. CarneiroM, FerrandN, NachmanMW (2009) Recombination and speciation: loci near centromeres are more differentiated than loci near telomeres between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics 181: 593–606.

85. FishmanL, KellyAJ, WillisJH (2002) Minor quantitative trait loci underlie floral traits associated with mating system divergence in Mimulus. Evolution 56: 2138–2155.

86. SankararamanS, MallickS, DannemannM, PruferK, KelsoJ, et al. (2014) The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507: 354–357.

87. Institute DJG Mimulus Genome Project. http://www.phytozome.net/

88. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.

89. DePristoMA, BanksE, PoplinR, GarimellaKV, MaguireJR, et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: 491–498.

90. McKennaA, HannaM, BanksE, SivachenkoA, CibulskisK, et al. (2010) The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20: 1297–1303.

91. Team RC (2013) R: A language and environment for statistical computing. Vienna, Austria.

92. ParadisE, ClaudeJ, StrimmerK (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.

93. JakobssonM, ScholzSW, ScheetP, GibbsJR, VanLiereJM, et al. (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451: 998–1003.

94. BowcockAM, Ruiz-LinaresA, TomfohrdeJ, MinchE, KiddJR, et al. (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455–457.

95. ReichD, PattersonN, CampbellD, TandonA, MazieresS, et al. (2012) Reconstructing Native American population history. Nature 488: 370–374.

96. ReichD, GreenRE, KircherM, KrauseJ, PattersonN, et al. (2010) Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468: 1053–1060.

97. KopelmanNM, StoneL, GascuelO, RosenbergNA (2013) The behavior of admixed populations in neighbor-joining inference of population trees. Pac Symp Biocomput 273–284.

98. Lee YW (2009) Genetic analysis of standing variation for floral morphology and fitness components in a natural population of Mimulus guttatus (common monkeyflower). PhD, Duke University.

99. RaghavanM, SkoglundP, GrafKE, MetspaluM, AlbrechtsenA, et al. (2014) Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505: 87–91.

100. PattersonN, MoorjaniP, LuoY, MallickS, RohlandN, et al. (2012) Ancient admixture in human history. Genetics 192: 1065–1093.

101. Durbin R (1998) Biological sequence analysis : probabalistic models of proteins and nucleic acids. Cambridge, UK New York: Cambridge University Press. xi, 356 p. p.

102. SandersonMJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19: 101–109.

103. BouckaertRR (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26: 1372–1373.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#