#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Recombination Accelerates Adaptation on a Large-Scale Empirical Fitness Landscape in HIV-1


One of the most challenging issues in evolutionary biology concerns the question of why most organisms exchange genetic material with each other, e.g. during sexual reproduction. Gene shuffling can create genetic diversity that facilitates adaptation to new environments, but theory shows that this effect is highly dependent on how different genes interact in determining the fitness of an organism. Using a large data set of fitness values based on HIV-1, we provide evidence that shuffling of genetic material indeed raises the level of genetic diversity, and as a result accelerates adaptation. Our results also propose genetic shuffling as a mechanism utilized by HIV to accelerate the evolution of multi-drug-resistant strains.


Vyšlo v časopise: Recombination Accelerates Adaptation on a Large-Scale Empirical Fitness Landscape in HIV-1. PLoS Genet 10(6): e32767. doi:10.1371/journal.pgen.1004439
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004439

Souhrn

One of the most challenging issues in evolutionary biology concerns the question of why most organisms exchange genetic material with each other, e.g. during sexual reproduction. Gene shuffling can create genetic diversity that facilitates adaptation to new environments, but theory shows that this effect is highly dependent on how different genes interact in determining the fitness of an organism. Using a large data set of fitness values based on HIV-1, we provide evidence that shuffling of genetic material indeed raises the level of genetic diversity, and as a result accelerates adaptation. Our results also propose genetic shuffling as a mechanism utilized by HIV to accelerate the evolution of multi-drug-resistant strains.


Zdroje

1. Weismann A (1904) The evolution theory. London: Edward Arnold.

2. OttoSP, GersteinAC (2006) Why have sex? The population genetics of sex and recombination. Biochem Soc Trans 34: 519–522.

3. BartonNH, CharlesworthB (1998) Why sex and recombination? Science 281: 1986–1990.

4. FelsensteinJ (1974) The evolutionary advantage of recombination. Genetics 78: 737–756.

5. Maynard SmithJM (1988) Selection for recombination in a polygenic model–the mechanism. Genet Res 51: 59–63.

6. CharlesworthB (1993) Directional selection and the evolution of sex and recombination. Genet Res 61: 205–224.

7. FelsensteinJ (1965) The effect of linkage on directional selection. Genetics 52: 349–363.

8. BartonNH (1995) Linkage and the limits to natural selection. Genetics 140: 821–841.

9. KondrashovAS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435–440.

10. de VisserJAGM, ElenaSF (2007) The evolution of sex: empirical insights into the roles of epistasis and drift. Nature Reviews Genetics 8: 139–149.

11. MoradigaravandD, EngelstädterJ (2012) The effect of bacterial recombination on adaptation on fitness landscapes with limited peak accessibility. PLoS Comput Biol 8: e1002735.

12. KondrashovFA, KondrashovAS (2001) Multidimensional epistasis and the disadvantage of sex. Proc Natl Acad Sci U S A 98: 12089–12092.

13. HillWG, RobertsonA (1966) Effect of Linkage on Limits to Artificial Selection. Genetical Research 8: 269–294.

14. Fisher RA (1930) The Genetical Theory Of Natural Selection USA: Oxford University Press.

15. MullerHJ (1932) Some genetic aspects of sex. American Naturalist 66: 118–138.

16. KimY, OrrHA (2005) Adaptation in sexuals vs. asexuals: Clonal interference and the Fisher-Muller model. Genetics 171: 1377–1386.

17. RiceWR, ChippindaleAK (2001) Sexual recombination and the power of natural selection. Science 294: 555–559.

18. ColegraveN (2002) Sex releases the speed limit on evolution. Nature 420: 664–666.

19. PoonA, ChaoL (2004) Drift increases the advantage of sex in RNA bacteriophage Phi6. Genetics 166: 19–24.

20. GoddardMR, GodfrayHC, BurtA (2005) Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434: 636–640.

21. BecksL, AgrawalAF (2012) The Evolution of Sex Is Favoured During Adaptation to New Environments. Plos Biology 10: e1001317.

22. de VisserJAGM, ParkSC, KrugJ (2009) Exploring the Effect of Sex on Empirical Fitness Landscapes. American Naturalist 174: S15–S30.

23. HinkleyT, MartinsJ, ChappeyC, HaddadM, StawiskiE, et al. (2011) A systems analysis of mutational effects in HIV-1 protease and reverse transcriptase. Nat Genet 43: 487–489.

24. DesaiMM, FisherDS, MurrayAW (2007) The speed of evolution and maintenance of variation in asexual populations. Current Biology 17: 385–394.

25. DesaiMM, FisherDS (2007) Beneficial mutation selection balance and the effect of linkage on positive selection. Genetics 176: 1759–1798.

26. WeissmanDB, BartonNH (2012) Limits to the rate of adaptive substitution in sexual populations. Plos Genetics 8: e1002740.

27. SniegowskiPD, GerrishPJ (2010) Beneficial mutations and the dynamics of adaptation in asexual populations. Philosophical Transactions of the Royal Society B-Biological Sciences 365: 1255–1263.

28. NeherRA (2013) Genetic Draft, Selective Interference, and Population Genetics of Rapid Adaptation. Annual Review of Ecology, Evolution, and Systematics, Vol 44 44: 195–215.

29. ParkSC, KrugJ (2007) Clonal interference in large populations. Proceedings of the National Academy of Sciences of the United States of America 104: 18135–18140.

30. ParkSC, KrugJ (2013) Rate of Adaptation in Sexuals and Asexuals: A Solvable Model of the Fisher-Muller Effect. Genetics 195: 941–955.

31. BartonNH (1995) A General-Model for the Evolution of Recombination. Genetical Research 65: 123–144.

32. TrindadeS, SousaA, XavierKB, DionisioF, FerreiraMG, et al. (2009) Positive epistasis drives the acquisition of multidrug resistance. Plos Genetics 5: e1000578.

33. BonhoefferS, ChappeyC, ParkinNT, WhitcombJM, PetropoulosCJ (2004) Evidence for positive epistasis in HIV-1. Science 306: 1547–1550.

34. HeXL, QianWF, WangZ, LiY, ZhangJZ (2010) Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nature Genetics 42: 272–U120.

35. Maisnier-PatinS, RothJR, FredrikssonA, NystromT, BergOG, et al. (2005) Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nature Genetics 37: 1376–1379.

36. BurchCL, ChaoL (2004) Epistasis and its relationship to canalization in the RNA virus phi 6. Genetics 167: 559–567.

37. KhanAI, DinhDM, SchneiderD, LenskiRE, CooperTF (2011) Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332: 1193–1196.

38. ChouHH, ChiuHC, DelaneyNF, SegreD, MarxCJ (2011) Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation. Science 332: 1190–1192.

39. KvitekDJ, SherlockG (2011) Reciprocal Sign Epistasis between Frequently Experimentally Evolved Adaptive Mutations Causes a Rugged Fitness Landscape. Plos Genetics 7: e1002056.

40. SilvaRF, MendoncaSCM, CarvalhoLM, ReisAM, GordoI, et al. (2011) Pervasive Sign Epistasis between Conjugative Plasmids and Drug-Resistance Chromosomal Mutations. Plos Genetics 7: e1002181.

41. WeinreichDM, DelaneyNF, DePristoMA, HartlDL (2006) Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312: 111–114.

42. FrankeJ, KlozerA, de VisserJA, KrugJ (2011) Evolutionary accessibility of mutational pathways. PLoS Comput Biol 7: e1002134.

43. KouyosRD, SilanderOK, BonhoefferS (2007) Epistasis between deleterious mutations and the evolution of recombination. Trends Ecol Evol 22: 308–315.

44. KouyosRD, OttoSP, BonhoefferS (2006) Effect of varying epistasis on the evolution of recombination. Genetics 173: 589–597.

45. OttoSP, BartonNH (2001) Selection for recombination in small populations. Evolution 55: 1921–1931.

46. KeightleyPD, OttoSP (2006) Interference among deleterious mutations favours sex and recombination in finite populations. Nature 443: 89–92.

47. Onafuwa-NugaA, TelesnitskyA (2009) The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 73: 451–480 Table of Contents

48. GuZ, GaoQ, FaustEA, WainbergMA (1995) Possible involvement of cell fusion and viral recombination in generation of human immunodeficiency virus variants that display dual resistance to AZT and 3TC. J Gen Virol 76(Pt 10): 2601–2605.

49. KellamP, LarderBA (1995) Retroviral Recombination Can Lead to Linkage of Reverse-Transcriptase Mutations That Confer Increased Zidovudine Resistance. Journal of Virology 69: 669–674.

50. MoutouhL, CorbeilJ, RichmanDD (1996) Recombination leads to the rapid emergence of HIV-1 dually resistant mutants under selective drug pressure. Proc Natl Acad Sci U S A 93: 6106–6111.

51. MalimMH, EmermanM (2001) HIV-1 sequence variation: Drift, shift, and attenuation. Cell 104: 469–472.

52. Simon-LoriereE, HolmesEC (2011) Why do RNA viruses recombine? Nature Reviews Microbiology 9: 617–626.

53. FraserC (2005) HIV recombination: what is the impact on antiretroviral therapy? Journal of the Royal Society Interface 2: 489–503.

54. BretscherMT, AlthausCL, MullerV, BonhoefferS (2004) Recombination in HIV and the evolution of drug resistance: for better or for worse? Bioessays 26: 180–188.

55. KouyosRD, FouchetD, BonhoefferS (2009) Recombination and drug resistance in HIV: Population dynamics and stochasticity. Epidemics 1: 58–69.

56. KouyosRD, LeventhalGE, HinkleyT, HaddadM, WhitcombJM, et al. (2012) Exploring the complexity of the HIV-1 fitness landscape. Plos Genetics 8: e1002551.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#