Pervasive Divergence of Transcriptional Gene Regulation in Caenorhabditis Nematodes
Given the importance of gene expression changes in evolution, a better understanding of how they accumulate is desirable. However, gene regulation is a complex biochemical process and it is not a priori clear whether general trends even exist. We systematically addressed this question by testing, in C. elegans, the functions of regulatory elements of eight different genes from four other nematodes. We saw rampant variation in gene regulatory mechanisms, even between closely related species. While the differences were usually seen in a relatively small number of cells, there was a discernible trend – there were many more instances of gain, rather than loss of expression, compared to patterns directed by the C. elegans cis elements. Finally, the recurrence of ectopic expression in the same cells suggests that the paths open to evolution may be constrained by the composition of regulatory elements. We view these patterns as a reflection of general mechanisms of gene regulatory evolution and suggest that these can be refined, and others discovered, using systematic functional tests.
Vyšlo v časopise:
Pervasive Divergence of Transcriptional Gene Regulation in Caenorhabditis Nematodes. PLoS Genet 10(6): e32767. doi:10.1371/journal.pgen.1004435
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004435
Souhrn
Given the importance of gene expression changes in evolution, a better understanding of how they accumulate is desirable. However, gene regulation is a complex biochemical process and it is not a priori clear whether general trends even exist. We systematically addressed this question by testing, in C. elegans, the functions of regulatory elements of eight different genes from four other nematodes. We saw rampant variation in gene regulatory mechanisms, even between closely related species. While the differences were usually seen in a relatively small number of cells, there was a discernible trend – there were many more instances of gain, rather than loss of expression, compared to patterns directed by the C. elegans cis elements. Finally, the recurrence of ectopic expression in the same cells suggests that the paths open to evolution may be constrained by the composition of regulatory elements. We view these patterns as a reflection of general mechanisms of gene regulatory evolution and suggest that these can be refined, and others discovered, using systematic functional tests.
Zdroje
1. WrayGA, HahnMW, AbouheifE, BalhoffJP, PizerM, et al. (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20: 1377–1419 doi:10.1093/molbev/msg140
2. LynchVJ, WagnerGP (2008) Resurrecting the role of transcription factor change in developmental evolution. Evolution 62: 2131–2154 doi:10.1111/j.1558-5646.2008.00440.x
3. HsiaCC, McGinnisW (2003) Evolution of transcription factor function. Curr Opin Genet Dev 13: 199–206 doi:10.1016/S0959-437X(03)00017-0
4. TuchBB, GalgoczyDJ, HerndayAD, LiH, JohnsonAD (2008) The evolution of combinatorial gene regulation in fungi. PLoS Biol 6: e38 doi:10.1371/journal.pbio.0060038
5. WrayGA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8: 206–216 doi:10.1038/nrg2063
6. CarrollSB (2000) Endless forms: the evolution of gene regulation and morphological diversity. Cell 101: 577–580.
7. BremRB, YvertG, ClintonR, KruglyakL (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296: 752–755 doi:10.1126/science.1069516
8. Stern DL (2010) Evolution, development, and the predictable genome. 1st ed. Roberts & Company Publishers.
9. WittkoppPJ (2005) Genomic sources of regulatory variation in cis and in trans. Cell Mol Life Sci 62: 1779–1783 doi:10.1007/s00018-005-5064-9
10. GruberJD, VogelK, KalayG, WittkoppPJ (2012) Contrasting properties of gene-specific regulatory, coding, and copy number mutations in Saccharomyces cerevisiae: frequency, effects, and dominance. PLoS Genet 8: e1002497 doi:10.1371/journal.pgen.1002497
11. LandryCR, LemosB, RifkinSA, DickinsonWJ, HartlDL (2007) Genetic properties influencing the evolvability of gene expression. Science 317: 118–121 doi:10.1126/science.1140247
12. Davidson EH (2001) Genomic Regulatory Systems: Development and Evolution. Academic Press.
13. PollardDA, MosesAM, IyerVN, EisenMB (2006) Detecting the limits of regulatory element conservation and divergence estimation using pairwise and multiple alignments. BMC Bioinformatics 7: 376 doi:10.1186/1471-2105-7-376
14. HoMCW, JohnsenH, GoetzSE, SchillerBJ, BaeE, et al. (2009) Functional evolution of cis-regulatory modules at a homeotic gene in Drosophila. PLoS Genet 5: e1000709 doi:10.1371/journal.pgen.1000709
15. BrownCD, JohnsonDS, SidowA (2007) Functional Architecture and Evolution of Transcriptional Elements That Drive Gene Coexpression. Science 317: 1557–1560 doi:10.1126/science.1145893
16. CameronRA, DavidsonEH (2009) Flexibility of transcription factor target site position in conserved cis-regulatory modules. Dev Biol 336: 122–135 doi:10.1016/j.ydbio.2009.09.018
17. GordonKL, RuvinskyI (2012) Tempo and mode in evolution of transcriptional regulation. PLoS Genet 8: e1002432 doi:10.1371/journal.pgen.1002432
18. WangX, ChamberlinHM (2002) Multiple regulatory changes contribute to the evolution of the Caenorhabditis lin-48 ovo gene. Genes Dev 16: 2345–2349 doi:10.1101/gad.996302
19. WangX, GreenbergJF, ChamberlinHM (2004) Evolution of regulatory elements producing a conserved gene expression pattern in Caenorhabditis. Evol Dev 6: 237–245 doi:10.1111/j.1525-142X.2004.04029.x
20. MarcelliniS, SimpsonP (2006) Two or four bristles: functional evolution of an enhancer of scute in Drosophilidae. PLoS Biol 4: e386 doi:10.1371/journal.pbio.0040386
21. SungH-M, WangT-Y, WangD, HuangY-S, WuJ-P, et al. (2009) Roles of trans and cis variation in yeast intraspecies evolution of gene expression. Mol Biol Evol 26: 2533–2538 doi:10.1093/molbev/msp171
22. BarrièreA, GordonKL, RuvinskyI (2012) Coevolution within and between Regulatory Loci Can Preserve Promoter Function Despite Evolutionary Rate Acceleration. PLoS Genet 8: e1002961 doi:10.1371/journal.pgen.1002961
23. ChiangDY, MosesAM, KellisM, LanderES, EisenMB (2003) Phylogenetically and spatially conserved word pairs associated with gene-expression changes in yeasts. Genome Biol 4: R43 doi:10.1186/gb-2003-4-7-r43
24. GradYH, RothFP, HalfonMS, ChurchGM (2004) Prediction of similarly acting cis-regulatory modules by subsequence profiling and comparative genomics in Drosophila melanogaster and D.pseudoobscura. Bioinformatics 20: 2738–2750 doi:10.1093/bioinformatics/bth320
25. RebeizM, CastroB, LiuF, YueF, PosakonyJW (2012) Ancestral and conserved cis-regulatory architectures in developmental control genes. Dev Biol 362: 282–294 doi:10.1016/j.ydbio.2011.12.011
26. HareEE, PetersonBK, IyerVN, MeierR, EisenMB (2008) Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet 4: e1000106 doi:10.1371/journal.pgen.1000106
27. CandeJ, GoltsevY, LevineMS (2009) Conservation of enhancer location in divergent insects. Proc Natl Acad Sci 106: 14414–14419 doi:10.1073/pnas.0905754106
28. PanD, ValentineSA, CoureyAJ (1994) The bipartite D. melanogaster twist promoter is reorganized in D. virilis. Mech Dev 46: 41–53.
29. HauenschildA, RingroseL, AltmutterC, ParoR, RehmsmeierM (2008) Evolutionary plasticity of polycomb/trithorax response elements in Drosophila species. PLoS Biol 6: e261 doi:10.1371/journal.pbio.0060261
30. KalayG, WittkoppPJ (2010) Nomadic enhancers: tissue-specific cis-regulatory elements of yellow have divergent genomic positions among Drosophila species. PLoS Genet 6: e1001222 doi:10.1371/journal.pgen.1001222
31. FrankelN, ErezyilmazDF, McGregorAP, WangS, PayreF, et al. (2011) Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. Nature 474: 598–603 doi:10.1038/nature10200
32. LudwigMZ, BergmanC, PatelNH, KreitmanM (2000) Evidence for stabilizing selection in eukaryotic enhancer element. Nature 403: 564–567.
33. GompelN, Prud'hommeB, WittkoppPJ, KassnerVA, CarrollSB (2005) Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433: 481–487 doi:10.1038/nature03235
34. Prud'hommeB, GompelN, RokasA, KassnerVA, WilliamsTM, et al. (2006) Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440: 1050–1053 doi:10.1038/nature04597
35. TrueJR, HaagES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3: 109–119.
36. SulstonJE, HorvitzHR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56: 110–156.
37. SulstonJE, SchierenbergE, WhiteJG, ThomsonJN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100: 64–119.
38. ZhaoZ, BoyleTJ, BaoZ, MurrayJI, MericleB, et al. (2008) Comparative analysis of embryonic cell lineage between Caenorhabditis briggsae and Caenorhabditis elegans. Dev Biol 314: 93–99 doi:10.1016/j.ydbio.2007.11.015
39. ElementoO, TavazoieS (2005) Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach. Genome Biol 6: R18 doi:10.1186/gb-2005-6-2-r18
40. Kiontke K, Fitch DHA (2005) The phylogenetic relationships of Caenorhabditis and other rhabditids. WormBook : the online review of C. elegans biology. pp. 1–11. doi:10.1895/wormbook.1.11.1.
41. TiroshI, BarkaiN (2011) Inferring regulatory mechanisms from patterns of evolutionary divergence. Mol Syst Biol 7: 530 doi:10.1038/msb.2011.60
42. LandryCR, WittkoppPJ, TaubesCH, RanzJM, ClarkAG, et al. (2005) Compensatory cis-trans evolution and the dysregulation of gene expression in interspecific hybrids of Drosophila. Genetics 171: 1813–1822 doi:10.1534/genetics.105.047449
43. WittkoppPJ, HaerumBK, ClarkAG (2008) Regulatory changes underlying expression differences within and between Drosophila species. Nat Genet 40: 346–350 doi:10.1038/ng.77
44. TiroshI, ReikhavS, LevyAA, BarkaiN (2009) A yeast hybrid provides insight into the evolution of gene expression regulation. Science 324: 659–662 doi:10.1126/science.1169766
45. HillierLW, MillerRD, BairdSE, ChinwallaA, FultonLA, et al. (2007) Comparison of C. elegans and C. briggsae genome sequences reveals extensive conservation of chromosome organization and synteny. PLoS Biol 5: e167 doi:10.1371/journal.pbio.0050167
46. BarrièreA, YangS-P, PekarekE, ThomasCG, HaagES, et al. (2009) Detecting heterozygosity in shotgun genome assemblies: Lessons from obligately outcrossing nematodes. Genome Res 19: 470–480 doi:10.1101/gr.081851.108.470
47. KennedyBP, AamodtEJ, AllenFL, ChungMA, HeschlMFP, et al. (1993) The Gut Esterase Gene (ges-1) From the Nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Mol Biol 229: 890–908.
48. MaduroMF, PilgrimD (1996) Conservation of function and expression of unc-119 from two Caenorhabditis species despite divergence of non-coding DNA. Gene 183: 77–85.
49. RuvinskyI, RuvkunG (2003) Functional tests of enhancer conservation between distantly related species. Development 130: 5133–5142 doi:10.1242/dev.00711
50. PetalcorinMIR, JoshuaGW, AgapowP-M, DolphinCT (2005) The fmo genes of Caenorhabditis elegans and C. briggsae: characterisation, gene expression and comparative genomic analysis. Gene 346: 83–96 doi:10.1016/j.gene.2004.09.021
51. MarriS, GuptaBP (2009) Dissection of lin-11 enhancer regions in Caenorhabditis elegans and other nematodes. Dev Biol 325: 402–411 doi:10.1016/j.ydbio.2008.09.026
52. KiontkeKC, FélixM-A, AilionM, Rockman MV, BraendleC, et al. (2011) A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 11: 339 doi:10.1186/1471-2148-11-339
53. KiontkeK, GavinNP, RaynesY, RoehrigC, PianoF, et al. (2004) Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proc Natl Acad Sci 101: 9003–9008 doi:10.1073/pnas.0403094101
54. Poinar Jr. GO (2011) The evolutionary history of nematodes. Leiden, the Netherlands: Brill.
55. JinY, JorgensenEM, HartwiegE, HorvitzHR (1999) The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J Neurosci 19: 539–548.
56. SchuskeK, PalfreymanMT, WatanabeS, JorgensenEM (2007) UNC-46 is required for trafficking of the vesicular GABA transporter. Nat Neurosci 10: 846–853 doi:10.1038/nn1920
57. McIntireSL, ReimerRJ, SchuskeK, EdwardsRH, JorgensenEM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389: 870–876 doi:10.1038/39908
58. CinarH, KelesS, JinY (2005) Expression profiling of GABAergic motor neurons in Caenorhabditis elegans. Curr Biol 15: 340–346 doi:10.1016/j.cub.2005.02.025
59. JansenG, ThijssenK, WernerP (1999) The complete family of genes encoding G proteins of Caenorhabditis elegans. Nat Genet 21: 414–419.
60. RanganathanR, SawinER, TrentC, HorvitzHR (2001) Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine. J Neurosci 21: 5871–5884.
61. LoerCM, RivardL (2007) Evolution of Neuronal Patterning in Free-Living Rhabditid Nematodes I : Sex- Specific Serotonin-Containing Neurons. J Comp Neurol 502: 736–767 doi:10.1002/cne
62. BerdichevskyA, NedelcuS, BouliasK, BishopNA, GuarenteL, et al. (2010) 3-Ketoacyl thiolase delays aging of Caenorhabditis elegans and is required for lifespan extension mediated by sir-2.1. Proc Natl Acad Sci 107: 18927–18932 doi:10.1073/pnas.1013854107
63. MakHY, NelsonLS, BassonM, JohnsonCD, RuvkunG (2006) Polygenic control of Caenorhabditis elegans fat storage. Nat Genet 38: 363–368 doi:10.1038/ng1739
64. FrazerKA, PachterL, PoliakovA, RubinEM, DubchakI (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32: W273–9 doi:10.1093/nar/gkh458
65. LudwigMZ, PalssonA, AlekseevaE, BergmanCM, NathanJ, et al. (2005) Functional evolution of a cis-regulatory module. PLoS Biol 3: e93 doi:10.1371/journal.pbio.0030093
66. CrockerJ, TamoriY, ErivesA (2008) Evolution acts on enhancer organization to fine-tune gradient threshold readouts. PLoS Biol 6: e263 doi:10.1371/journal.pbio.0060263
67. WunderlichZ, BragdonMD, EckenrodeKB, Lydiard-MartinT, Pearl-WasermanS, et al. (2012) Dissecting sources of quantitative gene expression pattern divergence between Drosophila species. Mol Syst Biol 8: 604 doi:10.1038/msb.2012.35
68. McIntireSL, JorgensenEM, KaplanJ, HorvitzHR (1993) The GABAergic nervous system of Caenorhabditis elegans. Nature 364: 337–341.
69. GuastellaJ, JohnsonCD, StrettonAO (1991) GABA-immunoreactive neurons in the nematode Ascaris. J Comp Neurol 307: 584–597 doi:10.1002/cne.903070406
70. RivardL, SrinivasanJ, StoneA, OchoaS, SternbergPW, et al. (2010) A comparison of experience-dependent locomotory behaviors and biogenic amine neurons in nematode relatives of Caenorhabditis elegans. BMC Neurosci 11: 22 doi:10.1186/1471-2202-11-22
71. McManusCJ, CoolonJD, O'DuffM, Eipper-MainsJ, GraveleyBR, et al. (2010) Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res 20: 816–825 doi:10.1101/gr.102491.109
72. FowlkesCC, EckenrodeKB, BragdonMD, MeyerM, WunderlichZ, et al. (2011) A conserved developmental patterning network produces quantitatively different output in multiple species of Drosophila. PLoS Genet 7: e1002346 doi:10.1371/journal.pgen.1002346
73. TiroshI, WeinbergerA, BezalelD, KaganovichM, BarkaiN (2008) On the relation between promoter divergence and gene expression evolution. Mol Syst Biol 4: 159 doi:10.1038/msb4100198
74. McGaugheyDM, VintonR, HuynhJ (2008) Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b. Genome Res 18: 252–260 doi:10.1101/gr.6929408.1
75. RitterDI, LiQ, KostkaD, PollardKS, GuoS, et al. (2010) The importance of being cis: evolution of orthologous fish and mammalian enhancer activity. Mol Biol Evol 27: 2322–2332 doi:10.1093/molbev/msq128
76. TakahashiH, MitaniY, SatohG, SatohN (1999) Evolutionary alterations of the minimal promoter for notochord-specific Brachyury expression in ascidian embryos. Development 126: 3725–3734.
77. Oda-IshiiI, BertrandV, MatsuoI, LemaireP, SaigaH (2005) Making very similar embryos with divergent genomes: conservation of regulatory mechanisms of Otx between the ascidians Halocynthia roretzi and Ciona intestinalis. Development 132: 1663–1674 doi:10.1242/dev.01707
78. DutilhBE, HuynenMA, SnelB (2006) A global definition of expression context is conserved between orthologs, but does not correlate with sequence conservation. BMC Genomics 7: 10 doi:10.1186/1471-2164-7-10
79. FisherS, GriceEA, VintonRM, BesslingSL, McCallionAS (2006) Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science 312: 276–279 doi:10.1126/science.1124070
80. CooperGM, BrownCD (2008) Qualifying the relationship between sequence conservation and molecular function. Genome Res 18: 201–205 doi:10.1101/gr.7205808.4
81. TaherL, McGaugheyDM, MaraghS, AneasI, BesslingSL, et al. (2011) Genome-wide identification of conserved regulatory function in diverged sequences. Genome Res 21: 1139–1149 doi:10.1101/gr.119016.110
82. SwansonCI, SchwimmerDB, BaroloS (2011) Rapid Evolutionary Rewiring of a Structurally Constrained Eye Enhancer. Curr Biol 21: 1–11 doi:10.1016/j.cub.2011.05.056
83. NelsonAC, WardleFC (2013) Conserved non-coding elements and cis regulation: actions speak louder than words. Development 140: 1385–1395 doi:10.1242/dev.084459
84. BullaugheyK (2011) Changes in selective effects over time facilitate turnover of enhancer sequences. Genetics 187: 567–582 doi:10.1534/genetics.110.121590
85. ErivesA, LevineM (2004) Coordinate enhancers share common organizational features in the Drosophila genome. Proc Natl Acad Sci 101: 3851–3856 doi:10.1073/pnas.0400611101
86. CrockerJ, ErivesA (2008) A closer look at the eve stripe 2 enhancers of Drosophila and Themira. PLoS Genet 4: e1000276 doi:10.1371/journal.pgen.1000276
87. KimJ, CunninghamR, JamesB, WyderS, GibsonJD, et al. (2010) Functional characterization of transcription factor motifs using cross-species comparison across large evolutionary distances. PLoS Comput Biol 6: e1000652 doi:10.1371/journal.pcbi.1000652
88. SwansonCI, EvansNC, BaroloS (2010) Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer. Dev Cell 18: 359–370 doi:10.1016/j.devcel.2009.12.026
89. LibermanLM, StathopoulosA (2009) Design flexibility in cis-regulatory control of gene expression: synthetic and comparative evidence. Dev Biol 327: 578–589 doi:10.1016/j.ydbio.2008.12.020
90. RuvinskyI, OhlerU, BurgeCB, RuvkunG (2007) Detection of broadly expressed neuronal genes in C. elegans. Dev Biol 302: 617–626 doi:10.1016/j.ydbio.2006.09.014
91. HobertO (2011) Regulation of terminal differentiation programs in the nervous system. Annu Rev Cell Dev Biol 27: 681–696 doi:10.1146/annurev-cellbio-092910-154226
92. Boulin T, Etchberger JF, Hobert O (2006) Reporter gene fusions. WormBook : the online review of C. elegans biology. pp. 1–23. doi:10.1895/wormbook.1.106.1.
93. SternDL, OrgogozoV (2009) Is genetic evolution predictable? Science 323: 746–751.
94. RajakumarR, San MauroD, DijkstraMB, HuangMH, WheelerDE, et al. (2012) Ancestral developmental potential facilitates parallel evolution in ants. Science 335: 79–82 doi:10.1126/science.1211451
95. RogersWA, SalomoneJR, TacyDJ, CaminoEM, DavisKA, et al. (2013) Recurrent modification of a conserved cis-regulatory element underlies fruit fly pigmentation diversity. PLoS Genet 9: e1003740 doi:10.1371/journal.pgen.1003740
96. Xu S, Fire A, Seydoux G, Okkema P (1995) Fire Lab Vector Kit - June 1995.
97. GranatoM, SchnabelH, SchnabelR (1994) pha-1, a selectable marker for gene transfer in C. elegans. Nucleic Acids Res 22: 1762–1763.
98. KellyW, XuS, MontgomeryM, FireA (1997) Distinct requirements for somatic and germline expression of a generally expressed Caenorhabditis elegans gene. Genetics 146: 227–238.
99. WoodruffGC, EkeO, BairdSE, FélixM-A, HaagES (2010) Insights into species divergence and the evolution of hermaphroditism from fertile interspecies hybrids of Caenorhabditis nematodes. Genetics 186: 997–1012 doi:10.1534/genetics.110.120550
100. BarrièreA, GordonKL, RuvinskyI (2011) Distinct Functional Constraints Partition Sequence Conservation in a cis-Regulatory Element. PLoS Genet 7: e1002095 doi:10.1371/journal.pgen.1002095
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 6
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Early Back-to-Africa Migration into the Horn of Africa
- PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in
- OsHUS1 Facilitates Accurate Meiotic Recombination in Rice
- An Operon of Three Transcriptional Regulators Controls Horizontal Gene Transfer of the Integrative and Conjugative Element ICE in B13