Souffle/Spastizin Controls Secretory Vesicle Maturation during Zebrafish Oogenesis
Oocytes of egg laying animals frequently represent the biggest cell type of a species. The size of the egg is a consequence of active transport processes, e.g. the import of yolk proteins, which results in the massive storage of vesicles. In addition, secretory vesicles termed cortical granules are stored in the oocyte to be discharged right after fertilization during cortical reaction, which also occurs in mammals. Their secretion leads to chorion expansion, which prevents the lethal entry of additional sperm and protects the developing embryo against physical damage. Mutants with a defect in membrane transport are successful tools to discover genes regulating vesicle formation. We molecularly identify the disrupted gene in the recessive maternal-effect mutation souffle, which encodes a homolog of human SPASTIZIN. SPASTIZIN was previously implicated in endocytosis, but our cellular analysis of mutant oocytes connects this gene also with the regulation of cortical granule exocytosis. More precisely, we show that Suf/Spastizin is crucial for the maturation of cortical granules into secretion competent vesicles describing a novel role for this protein. Since SPASITIZN causes the disease Hereditary Spastic Paraplegia in humans, our results will help to decipher the pathogenesis of this neurodegenerative disorder.
Vyšlo v časopise:
Souffle/Spastizin Controls Secretory Vesicle Maturation during Zebrafish Oogenesis. PLoS Genet 10(6): e32767. doi:10.1371/journal.pgen.1004449
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004449
Souhrn
Oocytes of egg laying animals frequently represent the biggest cell type of a species. The size of the egg is a consequence of active transport processes, e.g. the import of yolk proteins, which results in the massive storage of vesicles. In addition, secretory vesicles termed cortical granules are stored in the oocyte to be discharged right after fertilization during cortical reaction, which also occurs in mammals. Their secretion leads to chorion expansion, which prevents the lethal entry of additional sperm and protects the developing embryo against physical damage. Mutants with a defect in membrane transport are successful tools to discover genes regulating vesicle formation. We molecularly identify the disrupted gene in the recessive maternal-effect mutation souffle, which encodes a homolog of human SPASTIZIN. SPASTIZIN was previously implicated in endocytosis, but our cellular analysis of mutant oocytes connects this gene also with the regulation of cortical granule exocytosis. More precisely, we show that Suf/Spastizin is crucial for the maturation of cortical granules into secretion competent vesicles describing a novel role for this protein. Since SPASITIZN causes the disease Hereditary Spastic Paraplegia in humans, our results will help to decipher the pathogenesis of this neurodegenerative disorder.
Zdroje
1. SchekmanR, OrciL (1996) Coat proteins and vesicle budding. Science 271: 1526–1533.
2. RothmanJE (1994) Mechanisms of intracellular protein transport. Nature 372: 55–63.
3. GoldsteinJL, AndersonRG, BrownMS (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279: 679–685.
4. RothTF, PorterKR (1964) Yolk Protein Uptake in the Oocyte of the Mosquito Aedes Aegypti. L. J Cell Biol 20: 313–332.
5. BalklavaZ, PantS, FaresH, GrantBD (2007) Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat Cell Biol 9: 1066–1073.
6. GrantB, ZhangY, PaupardMC, LinSX, HallDH, et al. (2001) Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat Cell Biol 3: 573–579.
7. GrantBD, DonaldsonJG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10: 597–608.
8. PantS, SharmaM, PatelK, CaplanS, CarrCM, et al. (2009) AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol 11: 1399–1410.
9. SatoM, SatoK, FonarevP, HuangCJ, LiouW, et al. (2005) Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nat Cell Biol 7: 559–569.
10. HisaokaKK, FirlitCF (1962) The localization of nucleic acids during oogenesis in the zebrafish. Am J Anat 110: 203–215.
11. SelmanK, WallaceRA, SarkaA, QiX (1993) Stages of oocyte development in the zebrafish, Brachydanio rerio. J Morphol 218: 203–224.
12. WangY, GeW (2004) Developmental profiles of activin betaA, betaB, and follistatin expression in the zebrafish ovary: evidence for their differential roles during sexual maturation and ovulatory cycle. Biol Reprod 71: 2056–2064.
13. Babin PJ, Carnevali O, Lubzens E, Schneider WJ (2007) Molecular Aspects of Oocyte Vitellogenesis in Fish. In: Babin PJ, Cerda J, Lubzens E, editors. The Fish Oocyte: From Basic Studies to Biotechnological Applications. Dordrecht, The Netherlands: Springer. 39–76 p.
14. De MatteisMA, LuiniA (2011) Mendelian disorders of membrane trafficking. N Engl J Med 365: 927–938.
15. DionPA, DaoudH, RouleauGA (2009) Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet 10: 769–782.
16. NixonRA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19: 983–997.
17. FinstererJ, LoscherW, QuasthoffS, WanschitzJ, Auer-GrumbachM, et al. (2012) Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci 318: 1–18.
18. BlackstoneC (2012) Cellular pathways of hereditary spastic paraplegia. Annu Rev Neurosci 35: 25–47.
19. SalinasS, ProukakisC, CrosbyA, WarnerTT (2008) Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol 7: 1127–1138.
20. HaneinS, MartinE, BoukhrisA, ByrneP, GoizetC, et al. (2008) Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am J Hum Genet 82: 992–1002.
21. SagonaAP, NezisIP, PedersenNM, LiestolK, PoultonJ, et al. (2010) PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol 12: 362–371.
22. KhundadzeM, KollmannK, KochN, BiskupC, NietzscheS, et al. (2013) A Hereditary Spastic Paraplegia Mouse Model Supports a Role of ZFYVE26/SPASTIZIN for the Endolysosomal System. PLoS Genet 9: e1003988.
23. MurmuRP, MartinE, RastetterA, EstevesT, MurielMP, et al. (2011) Cellular distribution and subcellular localization of spatacsin and spastizin, two proteins involved in hereditary spastic paraplegia. Mol Cell Neurosci 47: 191–202.
24. SlabickiM, TheisM, KrastevDB, SamsonovS, MundwillerE, et al. (2010) A genome-scale DNA repair RNAi screen identifies SPG48 as a novel gene associated with hereditary spastic paraplegia. PLoS Biol 8: e1000408.
25. VantaggiatoC, CrimellaC, AiroldiG, PolishchukR, BonatoS, et al. (2013) Defective autophagy in spastizin mutated patients with hereditary spastic paraparesis type 15. Brain 136: 3119–3139.
26. HirstJ, BarlowLD, FranciscoGC, SahlenderDA, SeamanMN, et al. (2011) The fifth adaptor protein complex. PLoS Biol 9: e1001170.
27. HirstJ, BornerGH, EdgarJ, HeinMY, MannM, et al. (2013) Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Mol Biol Cell 24: 2558–2569.
28. DoschR, WagnerDS, MintzerKA, RunkeG, WiemeltAP, et al. (2004) Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev Cell 6: 771–780.
29. SigristCJ, CeruttiL, de CastroE, Langendijk-GenevauxPS, BulliardV, et al. (2010) PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38: D161–166.
30. PagniM, IoannidisV, CeruttiL, Zahn-ZabalM, JongeneelCV, et al. (2007) MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res 35: W433–437.
31. StenmarkH, AaslandR, TohBH, D'ArrigoA (1996) Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem 271: 24048–24054.
32. PatkiV, LaweDC, CorveraS, VirbasiusJV, ChawlaA (1998) A functional PtdIns(3)P-binding motif. Nature 394: 433–434.
33. BurdCG, EmrSD (1998) Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol Cell 2: 157–162.
34. GaullierJM, SimonsenA, D'ArrigoA, BremnesB, StenmarkH, et al. (1998) FYVE fingers bind PtdIns(3)P. Nature 394: 432–433.
35. PostlethwaitJH (2007) The zebrafish genome in context: ohnologs gone missing. J Exp Zool B Mol Dev Evol 308: 563–577.
36. SagonaAP, NezisIP, BacheKG, HaglundK, BakkenAC, et al. (2011) A tumor-associated mutation of FYVE-CENT prevents its interaction with Beclin 1 and interferes with cytokinesis. PLoS One 6: e17086.
37. MartinE, YanicostasC, RastetterA, NainiSM, MaouedjA, et al. (2012) Spatacsin and spastizin act in the same pathway required for proper spinal motor neuron axon outgrowth in zebrafish. Neurobiol Dis 48: 299–308.
38. GrohKJ, SchonenbergerR, EggenRI, SegnerH, SuterMJ (2013) Analysis of protein expression in zebrafish during gonad differentiation by targeted proteomics. Gen Comp Endocrinol 193: 210–220.
39. von HofstenJ, OlssonPE (2005) Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes. Reprod Biol Endocrinol 3: 63.
40. HirstJ, IrvingC, BornerGH (2013) Adaptor protein complexes AP-4 and AP-5: new players in endosomal trafficking and progressive spastic paraplegia. Traffic 14: 153–164.
41. ChavrierP, PartonRG, HauriHP, SimonsK, ZerialM (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62: 317–329.
42. FassierC, HuttJA, ScholppS, LumsdenA, GirosB, et al. (2010) Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nat Neurosci 13: 1380–1387.
43. UllrichO, ReinschS, UrbeS, ZerialM, PartonRG (1996) Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 135: 913–924.
44. GoldsteinJL, BrownMS, AndersonRG, RussellDW, SchneiderWJ (1985) Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1: 1–39.
45. SchneiderWJ (1996) Vitellogenin receptors: oocyte-specific members of the low-density lipoprotein receptor supergene family. Int Rev Cytol 166: 103–137.
46. SireMF, BabinPJ, VernierJM (1994) Involvement of the Lysosomal System in Yolk Protein Deposit and Degradation during Vitellogenesis and Embryonic-Development in Trout. Journal of Experimental Zoology 269: 69–83.
47. KarinM, MintzB (1981) Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. J Biol Chem 256: 3245–3252.
48. YamashiroDJ, TyckoB, FlussSR, MaxfieldFR (1984) Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell 37: 789–800.
49. WillinghamMC, HanoverJA, DicksonRB, PastanI (1984) Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells. Proc Natl Acad Sci U S A 81: 175–179.
50. El-JouniW, HaunS, HodeifyR, WalkerAH, MachacaK (2007) Vesicular traffic at the cell membrane regulates oocyte meiotic arrest. Development 134: 3307–3315.
51. ChenC, Garcia-SantosD, IshikawaY, SeguinA, LiL, et al. (2013) Snx3 regulates recycling of the transferrin receptor and iron assimilation. Cell Metab 17: 343–352.
52. ChengH, GovindanJA, GreensteinD (2008) Regulated trafficking of the MSP/Eph receptor during oocyte meiotic maturation in C. elegans. Curr Biol 18: 705–714.
53. JalabertB, TheronM-C, HeydorffM (1978) Production of fertilizable oocytes from follicles of rainbow trout (Salmo gairdnerii) following in vitro maturation and ovulation. Ann Biol anim Bioch Biophys 18: 461–470.
54. SelmanK, PetrinoTR, WallaceRA (1994) Experimental conditions for oocyte maturation in the zebrafish, Brachydanio rerio. The Journal of Experimental Zoology 269: 538–550.
55. NagahamaY (1985) Stimulation of 17 alpha,20 beta-dihydroxy-4-pregnen-3-one production in the granulosa cells of Amago salmon, Oncorhynchus rhodurus, by cyclic nucleotides. The Journal of Experimental Zoology 236: 371–375.
56. PaulsS, Geldmacher-VossB, Campos-OrtegaJA (2001) A zebrafish histone variant H2A.F/Z and a transgenic H2A.F/Z:GFP fusion protein for in vivo studies of embryonic development. Dev Genes Evol 211: 603–610.
57. SchielJA, ChildsC, PrekerisR (2013) Endocytic transport and cytokinesis: from regulation of the cytoskeleton to midbody inheritance. Trends Cell Biol 23: 319–327.
58. SimonGC, PrekerisR (2008) Mechanisms regulating targeting of recycling endosomes to the cleavage furrow during cytokinesis. Biochem Soc Trans 36: 391–394.
59. BarrFA, GrunebergU (2007) Cytokinesis: placing and making the final cut. Cell 131: 847–860.
60. HehnlyH, DoxseyS (2014) Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev Cell 28: 497–507.
61. TaguchiT (2013) Emerging roles of recycling endosomes. J Biochem 153: 505–510.
62. UrbeS, HuberLA, ZerialM, ToozeSA, PartonRG (1993) Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Lett 334: 175–182.
63. SatoM, GrantBD, HaradaA, SatoK (2008) Rab11 is required for synchronous secretion of chondroitin proteoglycans after fertilization in Caenorhabditis elegans. J Cell Sci 121: 3177–3186.
64. KhvotchevMV, RenM, TakamoriS, JahnR, SudhofTC (2003) Divergent functions of neuronal Rab11b in Ca2+-regulated versus constitutive exocytosis. J Neurosci 23: 10531–10539.
65. ChenW, FengY, ChenD, Wandinger-NessA (1998) Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol Biol Cell 9: 3241–3257.
66. BenliM, DoringF, RobinsonDG, YangX, GallwitzD (1996) Two GTPase isoforms, Ypt31p and Ypt32p, are essential for Golgi function in yeast. EMBO J 15: 6460–6475.
67. JeddG, MulhollandJ, SegevN (1997) Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. J Cell Biol 137: 563–580.
68. LapierreLA, DornMC, ZimmermanCF, NavarreJ, BurnetteJO, et al. (2003) Rab11b resides in a vesicular compartment distinct from Rab11a in parietal cells and other epithelial cells. Exp Cell Res 290: 322–331.
69. LiuM (2011) The biology and dynamics of mammalian cortical granules. Reprod Biol Endocrinol 9: 149.
70. WesselGM, BrooksJM, GreenE, HaleyS, VoroninaE, et al. (2001) The biology of cortical granules. Int Rev Cytol 209: 117–206.
71. ToozeSA, MartensGJ, HuttnerWB (2001) Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol 11: 116–122.
72. MeldolesiJ, ChieregattiE, Luisa MalosioM (2004) Requirements for the identification of dense-core granules. Trends Cell Biol 14: 13–19.
73. KimT, Gondre-LewisMC, ArnaoutovaI, LohYP (2006) Dense-core secretory granule biogenesis. Physiology (Bethesda) 21: 124–133.
74. BeckerKA, HartNH (1999) Reorganization of filamentous actin and myosin-II in zebrafish eggs correlates temporally and spatially with cortical granule exocytosis. J Cell Sci 112(Pt 1): 97–110.
75. AsensioCS, SirkisDW, MaasJWJr, EgamiK, ToTL, et al. (2013) Self-assembly of VPS41 promotes sorting required for biogenesis of the regulated secretory pathway. Dev Cell 27: 425–437.
76. HartNH (1990) Fertilization in teleost fishes: mechanisms of sperm-egg interactions. Int Rev Cytol 121: 1–66.
77. HartNH, YuSF (1980) Cortical granule exocytosis and cell surface reorganization in eggs of Brachydanio. J Exp Zool 213: 137–159.
78. SteegmaierM, KlumpermanJ, FolettiDL, YooJS, SchellerRH (1999) Vesicle-associated membrane protein 4 is implicated in trans-Golgi network vesicle trafficking. Mol Biol Cell 10: 1957–1972.
79. EatonBA, HaugwitzM, LauD, MooreHP (2000) Biogenesis of regulated exocytotic carriers in neuroendocrine cells. J Neurosci 20: 7334–7344.
80. AhnHJ, ParkY, KimS, ParkHC, SeoSK, et al. (2010) The expression profile and function of Satb2 in zebrafish embryonic development. Mol Cells 30: 377–382.
81. KakhlonO, SakyaP, LarijaniB, WatsonR, ToozeSA (2006) GGA function is required for maturation of neuroendocrine secretory granules. EMBO J 25: 1590–1602.
82. NairS, LindemanRE, PelegriF (2013) In vitro oocyte culture-based manipulation of zebrafish maternal genes. Dev Dyn 242: 44–52.
83. BontemsF, SteinA, MarlowF, LyauteyJ, GuptaT, et al. (2009) Bucky ball organizes germ plasm assembly in zebrafish. Curr Biol 19: 414–422.
84. ClellandES, TanQ, BalofskyA, LacivitaR, PengC (2007) Inhibition of premature oocyte maturation: a role for bone morphogenetic protein 15 in zebrafish ovarian follicles. Endocrinology 148: 5451–5458.
85. OrciL, RavazzolaM, AmherdtM, LouvardD, PerreletA (1985) Clathrin-immunoreactive sites in the Golgi apparatus are concentrated at the trans pole in polypeptide hormone-secreting cells. Proc Natl Acad Sci U S A 82: 5385–5389.
86. ToozeJ, ToozeSA (1986) Clathrin-coated vesicular transport of secretory proteins during the formation of ACTH-containing secretory granules in AtT20 cells. J Cell Biol 103: 839–850.
87. PelissierA, ChauvinJP, LecuitT (2003) Trafficking through Rab11 endosomes is required for cellularization during Drosophila embryogenesis. Curr Biol 13: 1848–1857.
88. FergusonSM, De CamilliP (2012) Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13: 75–88.
89. SchmidSL, FrolovVA (2011) Dynamin: functional design of a membrane fission catalyst. Annu Rev Cell Dev Biol 27: 79–105.
90. PraefckeGJ, McMahonHT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5: 133–147.
91. MaciaE, EhrlichM, MassolR, BoucrotE, BrunnerC, et al. (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10: 839–850.
92. YamamotoK, OotaI (1967) An electron microscopic study of the formation of the yolk globule in the oocyte of zebrafish, Brachydanio rerio. Bull Fac Fish, Hokkaido Univ 17: 165–174.
93. WallaceRA, SelmanK (1990) Ultrastructural aspects of oogenesis and oocyte growth in fish and amphibians. J Electron Microsc Tech 16: 175–201.
94. Le Menn F, Cerda J, Babin PJ (2007) Ultrastructural aspects of the ontogeny and differentiation of ray-finned fish ovarian follicles. In: Babin PJ, Cerda J, Lubzens E, editors. The Fish Oocyte: From Basic Studies to Biotechnological Applications. Dordrecht, The Netherlands: Springer. 1–37 p.
95. WangX, KumarR, NavarreJ, CasanovaJE, GoldenringJR (2000) Regulation of vesicle trafficking in madin-darby canine kidney cells by Rab11a and Rab25. J Biol Chem 275: 29138–29146.
96. HoekstraD, TytecaD, van IJzendoornSC (2004) The subapical compartment: a traffic center in membrane polarity development. J Cell Sci 117: 2183–2192.
97. NakagawaT, SetouM, SeogD, OgasawaraK, DohmaeN, et al. (2000) A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103: 569–581.
98. BonifacinoJS, RojasR (2006) Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 7: 568–579.
99. MorvanJ, ToozeSA (2008) Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells. Histochem Cell Biol 129: 243–252.
100. AsensioCS, SirkisDW, EdwardsRH (2010) RNAi screen identifies a role for adaptor protein AP-3 in sorting to the regulated secretory pathway. J Cell Biol 191: 1173–1187.
101. Dell'AngelicaEC (2009) AP-3-dependent trafficking and disease: the first decade. Curr Opin Cell Biol 21: 552–559.
102. PillayCS, ElliottE, DennisonC (2002) Endolysosomal proteolysis and its regulation. Biochem J 363: 417–429.
103. ArvanP, CastleD (1998) Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 332(Pt 3): 593–610.
104. PooMM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2: 24–32.
105. CaroniP, DonatoF, MullerD (2012) Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 13: 478–490.
106. MinichielloL (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10: 850–860.
107. OrsoG, PendinD, LiuS, TosettoJ, MossTJ, et al. (2009) Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460: 978–983.
108. Westerfield M (2000) The zebrafish book: A guide for the laboratory use of zebrafish (Danio rerio). Eugene: University of Oregon Press.
109. SchindelinJ, Arganda-CarrerasI, FriseE, KaynigV, LongairM, et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682.
110. StuderD, MichelM, MüllerM (1989) High pressure freezing comes of age. Scanning Microsc Suppl 3: 253–268 discussion 268–259.
111. LiuL, GeW (2007) Growth differentiation factor 9 and its spatiotemporal expression and regulation in the zebrafish ovary. Biol Reprod 76: 294–302.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 6
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Early Back-to-Africa Migration into the Horn of Africa
- PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in
- OsHUS1 Facilitates Accurate Meiotic Recombination in Rice
- An Operon of Three Transcriptional Regulators Controls Horizontal Gene Transfer of the Integrative and Conjugative Element ICE in B13