#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate


During the development of most solid tumors, there are characteristic physiological differences in the tumor that result from tumor cells outgrowing their local blood supply. Two of these physiological differences, or “stresses,” that occur in the tumor are low oxygen levels (hypoxia) and an accumulation of lactic acidic (lactic acidosis). Cancer cells experiencing hypoxia and lactic acidosis tend to be more resistant to chemo- and radio-therapy and metastasize more readily. Therefore, it is important to understand how tumor cells adapt to and survive these stresses. We used a large scale screening experiment in order to find which genes and proteins are involved in tumor cell adaptation and survival under hypoxia or lactic acidosis. We found that inhibiting either of two genes involved in lipid synthesis allowed tumor cells to survive hypoxia. This occurred because silencing these genes led to an increase in the metabolite α-ketoglutarate, which repressed a transcription factor that contributed to cell death under hypoxia. This research specifically advances our understanding of how tumor cells survive hypoxia and lactic acidosis and more broadly enhances our understanding of the cellular biology of solid tumors.


Vyšlo v časopise: ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate. PLoS Genet 11(10): e32767. doi:10.1371/journal.pgen.1005599
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005599

Souhrn

During the development of most solid tumors, there are characteristic physiological differences in the tumor that result from tumor cells outgrowing their local blood supply. Two of these physiological differences, or “stresses,” that occur in the tumor are low oxygen levels (hypoxia) and an accumulation of lactic acidic (lactic acidosis). Cancer cells experiencing hypoxia and lactic acidosis tend to be more resistant to chemo- and radio-therapy and metastasize more readily. Therefore, it is important to understand how tumor cells adapt to and survive these stresses. We used a large scale screening experiment in order to find which genes and proteins are involved in tumor cell adaptation and survival under hypoxia or lactic acidosis. We found that inhibiting either of two genes involved in lipid synthesis allowed tumor cells to survive hypoxia. This occurred because silencing these genes led to an increase in the metabolite α-ketoglutarate, which repressed a transcription factor that contributed to cell death under hypoxia. This research specifically advances our understanding of how tumor cells survive hypoxia and lactic acidosis and more broadly enhances our understanding of the cellular biology of solid tumors.


Zdroje

1. Gatenby RA, Smallbone K, Maini PK, Rose F, Averill J, et al. (2007) Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br J Cancer 97: 646–653. 17687336

2. Gatenby RA, Gillies R.J. (2008) A microenvironmental model of carcinogenesis. Nature Reviews Cancer 8: 56–61. 18059462

3. Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5: 786–795. 16175178

4. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11: 393–410. doi: 10.1038/nrc3064 21606941

5. Abdollahi A, Folkman J (2010) Evading tumor evasion: Current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resistance Updates 13: 16–28. doi: 10.1016/j.drup.2009.12.001 20061178

6. Neri D, Supuran CT (2011) Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 10: 767–777. doi: 10.1038/nrd3554 21921921

7. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, et al. (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118: 3930–3942. doi: 10.1172/JCI36843 19033663

8. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-Inducible Factors and the Response to Hypoxic Stress. Molecular Cell 40: 294–309. doi: 10.1016/j.molcel.2010.09.022 20965423

9. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8: 967–975. doi: 10.1038/nrc2540 18987634

10. Sun RC, Denko NC (2014) Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19: 285–292. doi: 10.1016/j.cmet.2013.11.022 24506869

11. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, et al. (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481: 380–384.

12. Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, et al. (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A 108: 19611–19616. doi: 10.1073/pnas.1117773108 22106302

13. Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, et al. (2008) Glucose sensing by MondoA:Mlx complexes: A role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proceedings of the National Academy of Sciences 105: 6912–6917.

14. Peterson CW, Stoltzman CA, Sighinolfi MP, Han K-S, Ayer DE (2010) Glucose Controls Nuclear Accumulation, Promoter Binding, and Transcriptional Activity of the MondoA-Mlx Heterodimer. Molecular and Cellular Biology 30: 2887–2895. doi: 10.1128/MCB.01613-09 20385767

15. Chen JL-Y, Merl D, Peterson CW, Wu J, Liu PY, et al. (2010) Lactic Acidosis Triggers Starvation Response with Paradoxical Induction of TXNIP through MondoA. PLoS Genet 6: e1001093. doi: 10.1371/journal.pgen.1001093 20844768

16. Pawlus MR, Hu C-J (2013) Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response. Cellular Signalling 25: 1895–1903. doi: 10.1016/j.cellsig.2013.05.018 23707522

17. Hammond EM, Giaccia AJ (2005) The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Commun 331: 718–725. 15865928

18. Bacon AL, Harris AL (2004) Hypoxia-inducible factors and hypoxic cell death in tumour physiology. Ann Med 36: 530–539. 15513303

19. Chinnadurai G, Vijayalingam S, Gibson SB (2008) BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions. Oncogene 27 Suppl 1: S114–127. doi: 10.1038/onc.2009.49 19641497

20. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, et al. (2009) ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation. Science 324: 1076–1080. doi: 10.1126/science.1164097 19461003

21. Semenza GL (2010) HIF–1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20: 51–56. doi: 10.1016/j.gde.2009.10.009 19942427

22. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11: 85–95. doi: 10.1038/nrc2981 21258394

23. King A, Selak MA, Gottlieb E (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25: 4675–4682. 16892081

24. Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, et al. (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14: 2231–2239. 15987702

25. Kaelin WG Jr (2011) Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb Symp Quant Biol 76: 335–345. doi: 10.1101/sqb.2011.76.010975 22089927

26. Loenarz C, Schofield CJ (2008) Expanding chemical biology of 2-oxoglutarate oxygenases. Nat Chem Biol 4: 152–156. doi: 10.1038/nchembio0308-152 18277970

27. Quintero M, Brennan PA, Thomas GJ, Moncada S (2006) Nitric Oxide Is a Factor in the Stabilization of Hypoxia-Inducible Factor–1α in Cancer: Role of Free Radical Formation. Cancer Research 66: 770–774. 16424008

28. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB (2015) Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518: 413–416. doi: 10.1038/nature13981 25487152

29. Van der Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10: 671–684. doi: 10.1038/nrd3504 21878982

30. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang X-Y, et al. (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences 105: 18782–18787.

31. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, et al. (2009) Glucose Deprivation Contributes to the Development of KRAS Pathway Mutations in Tumor Cells. Science 325: 1555–1559. doi: 10.1126/science.1174229 19661383

32. Parks SK, Chiche J, Pouyssegur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 13: 611–623. doi: 10.1038/nrc3579 23969692

33. Saito S, Furuno A, Sakurai J, Sakamoto A, Park H-R, et al. (2009) Chemical Genomics Identifies the Unfolded Protein Response as a Target for Selective Cancer Cell Killing during Glucose Deprivation. Cancer Research 69: 4225–4234. doi: 10.1158/0008-5472.CAN-08-2689 19435925

34. Mabon ME MX, Jiao Y, Scott BA, Crowder CM. (2009) Systematic identification of gene activities promoting hypoxic death. Genetics 181: 13.

35. Dekanty A, Romero NM, Bertolin AP, Thomas MG, Leishman CC, et al. (2010) Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia. PLoS Genet 6: e1000994. doi: 10.1371/journal.pgen.1000994 20585616

36. Pan J, Zhang J, Hill A, Lapan P, Berasi S, et al. (2013) A kinome-wide siRNA screen identifies multiple roles for protein kinases in hypoxic stress adaptation, including roles for IRAK4 and GAK in protection against apoptosis in VHL-/- renal carcinoma cells, despite activation of the NF-kappaB pathway. J Biomol Screen 18: 782–796. 23591012

37. Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, et al. (2008) Cancer Proliferation Gene Discovery Through Functional Genomics. Science 319: 620–624. doi: 10.1126/science.1149200 18239126

38. Chen JL-Y, Lucas JE, Schroeder T, Mori S, Wu J, et al. (2008) The Genomic Analysis of Lactic Acidosis and Acidosis Response in Human Cancers. PLoS Genet 4: e1000293. doi: 10.1371/journal.pgen.1000293 19057672

39. Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, et al. (2008) Cancer proliferation gene discovery through functional genomics. Science 319: 620–624. doi: 10.1126/science.1149200 18239126

40. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, et al. (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137: 835–848. doi: 10.1016/j.cell.2009.05.006 19490893

41. Gould J GENE-E. Broad Institute.

42. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10: 48. doi: 10.1186/1471-2105-10-48 19192299

43. Tang X, Lucas JE, Chen JL-Y, LaMonte G, Wu J, et al. (2012) Functional Interaction between Responses to Lactic Acidosis and Hypoxia Regulates Genomic Transcriptional Outputs. Cancer Research 72: 491–502. doi: 10.1158/0008-5472.CAN-11-2076 22135092

44. Jeon S-M, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485: 661–665. doi: 10.1038/nature11066 22660331

45. Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, Woldegiorgis G, et al. (2000) The subcellular localization of acetyl-CoA carboxylase 2. Proceedings of the National Academy of Sciences 97: 1444–1449.

46. Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, et al. (2009) Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461: 109–113. doi: 10.1038/nature08268 19693011

47. Menendez JA, Vellon L, Mehmi I, Oza BP, Ropero S, et al. (2004) Inhibition of Fatty Acid Synthase (FAS) Suppresses HER2/Neu (ErbB–2) Oncogene Overexpression in Cancer Cells. Proceedings of the National Academy of Sciences of the United States of America 101: 10715–10720. 15235125

48. Tang X, Keenan MM, Wu J, Lin CA, Dubois L, et al. (2015) Comprehensive profiling of amino Acid response uncovers unique methionine-deprived response dependent on intact creatine biosynthesis. PLoS Genet 11: e1005158. doi: 10.1371/journal.pgen.1005158 25849282

49. Chang JT, Nevins JR (2006) GATHER: a systems approach to interpreting genomic signatures. Bioinformatics 22: 2926–2933. 17000751

50. Zhu E-D, Li N, Li B-S, Li W, Zhang W-J, et al. (2014) miR-30b, Down-Regulated in Gastric Cancer, Promotes Apoptosis and Suppresses Tumor Growth by Targeting Plasminogen Activator Inhibitor–1. PLoS ONE 9: e106049. doi: 10.1371/journal.pone.0106049 25170877

51. Zhang YP, Wang WL, Liu J, Li WB, Bai LL, et al. (2013) Plasminogen activator inhibitor–1 promotes the proliferation and inhibits the apoptosis of pulmonary fibroblasts by Ca(2+) signaling. Thromb Res 131: 64–71. doi: 10.1016/j.thromres.2012.09.003 23021499

52. Sun H, Qin B, Liu T, Wang Q, Liu J, et al. (2013) CistromeFinder for ChIP-seq and DNase-seq data reuse. Bioinformatics 29: 1352–1354. doi: 10.1093/bioinformatics/btt135 23508969

53. Hollenhorst PC, Ferris MW, Hull MA, Chae H, Kim S, et al. (2011) Oncogenic ETS proteins mimic activated RAS/MAPK signaling in prostate cells. Genes Dev 25: 2147–2157. doi: 10.1101/gad.17546311 22012618

54. Znosko WA, Yu S, Thomas K, Molina GA, Li C, et al. (2010) Overlapping functions of Pea3 ETS transcription factors in FGF signaling during zebrafish development. Dev Biol 342: 11–25. doi: 10.1016/j.ydbio.2010.03.011 20346941

55. Seifert AW, Yamaguchi T, Cohn MJ (2009) Functional and phylogenetic analysis shows that Fgf8 is a marker of genital induction in mammals but is not required for external genital development. Development 136: 2643–2651. doi: 10.1242/dev.036830 19592577

56. Chen JH, Vercamer C, Li Z, Paulin D, Vandenbunder B, et al. (1996) PEA3 transactivates vimentin promoter in mammary epithelial and tumor cells. Oncogene 13: 1667–1675. 8895512

57. Chang JT, Gatza ML, Lucas JE, Barry WT, Vaughn P, et al. (2011) SIGNATURE: a workbench for gene expression signature analysis. BMC Bioinformatics 12: 443. doi: 10.1186/1471-2105-12-443 22078435

58. Gatza ML, Kung HN, Blackwell KL, Dewhirst MW, Marks JR, et al. (2011) Analysis of tumor environmental response and oncogenic pathway activation identifies distinct basal and luminal features in HER2-related breast tumor subtypes. Breast Cancer Res 13: R62. doi: 10.1186/bcr2899 21672245

59. Chen JL, Merl D, Peterson CW, Wu J, Liu PY, et al. (2010) Lactic acidosis triggers starvation response with paradoxical induction of TXNIP through MondoA. PLoS Genet 6.

60. Lucas JE, Kung HN, Chi JT (2010) Latent factor analysis to discover pathway-associated putative segmental aneuploidies in human cancers. PLoS Comput Biol 6: e1000920. doi: 10.1371/journal.pcbi.1000920 20824128

61. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, et al. (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10: 529–541. 17157792

62. Tennant DA, Frezza C, MacKenzie ED, Nguyen QD, Zheng L, et al. (2009) Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene 28: 4009–4021. doi: 10.1038/onc.2009.250 19718054

63. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr (2013) Cellular Fatty Acid Metabolism and Cancer. Cell Metabolism 18: 153–161. doi: 10.1016/j.cmet.2013.05.017 23791484

64. Migita T, Narita T, Nomura K, Miyagi E, Inazuka F, et al. (2008) ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res 68: 8547–8554. doi: 10.1158/0008-5472.CAN-08-1235 18922930

65. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, et al. (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481: 380–384.

66. Wollenick K, Hu J, Kristiansen G, Schraml P, Rehrauer H, et al. (2012) Synthetic transactivation screening reveals ETV4 as broad coactivator of hypoxia-inducible factor signaling. Nucleic Acids Research 40: 1928–1943. doi: 10.1093/nar/gkr978 22075993

67. Wu M-Z, Tsai Y-P, Yang M-H, Huang C-H, Chang S-Y, et al. Interplay between HDAC3 and WDR5 Is Essential for Hypoxia-Induced Epithelial-Mesenchymal Transition. Molecular Cell 43: 811–822. doi: 10.1016/j.molcel.2011.07.012 21884981

68. Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P (2008) The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem 283: 36542–36552. doi: 10.1074/jbc.M804578200 18984585

69. Johansson C, Tumber A, Che K, Cain P, Nowak R, et al. (2014) The roles of Jumonji-type oxygenases in human disease. Epigenomics 6: 89–120. doi: 10.2217/epi.13.79 24579949

70. Blair LP, Cao J, Zou MR, Sayegh J, Yan Q (2011) Epigenetic Regulation by Lysine Demethylase 5 (KDM5) Enzymes in Cancer. Cancers (Basel) 3: 1383–1404.

71. Yang J, Ledaki I, Turley H, Gatter KC, Montero JC, et al. (2009) Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases. Ann N Y Acad Sci 1177: 185–197. doi: 10.1111/j.1749-6632.2009.05027.x 19845621

72. Shmakova A, Batie M, Druker J, Rocha S (2014) Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochem J 462: 385–395. doi: 10.1042/BJ20140754 25145438

73. Mimura I, Tanaka T, Wada Y, Kodama T, Nangaku M (2011) Pathophysiological response to hypoxia—from the molecular mechanisms of malady to drug discovery: epigenetic regulation of the hypoxic response via hypoxia-inducible factor and histone modifying enzymes. J Pharmacol Sci 115: 453–458. 21422728

74. Mannironi C, Proietto M, Bufalieri F, Cundari E, Alagia A, et al. (2014) An high-throughput in vivo screening system to select H3K4-specific histone demethylase inhibitors. PLoS One 9: e86002. doi: 10.1371/journal.pone.0086002 24489688

75. Sayegh J, Cao J, Zou MR, Morales A, Blair LP, et al. (2013) Identification of small molecule inhibitors of Jumonji AT-rich interactive domain 1B (JARID1B) histone demethylase by a sensitive high throughput screen. J Biol Chem 288: 9408–9417. doi: 10.1074/jbc.M112.419861 23408432

76. Zaidi N, Royaux I, Swinnen JV, Smans K (2012) ATP Citrate Lyase Knockdown Induces Growth Arrest and Apoptosis through Different Cell- and Environment-Dependent Mechanisms. Molecular Cancer Therapeutics 11: 1925–1935. doi: 10.1158/1535-7163.MCT-12-0095 22718913

77. Bhalla K, Hwang BJ, Dewi RE, Ou L, Twaddel W, et al. (2011) PGC1alpha promotes tumor growth by inducing gene expression programs supporting lipogenesis. Cancer Res 71: 6888–6898. doi: 10.1158/0008-5472.CAN-11-1011 21914785

78. Mason P, Liang B, Li L, Fremgen T, Murphy E, et al. (2012) SCD1 Inhibition Causes Cancer Cell Death by Depleting Mono-Unsaturated Fatty Acids. PLoS ONE 7: e33823. doi: 10.1371/journal.pone.0033823 22457791

79. Zhan Y, Ginanni N, Tota MR, Wu M, Bays NW, et al. (2008) Control of Cell Growth and Survival by Enzymes of the Fatty Acid Synthesis Pathway in HCT–116 Colon Cancer Cells. Clinical Cancer Research 14: 5735–5742. doi: 10.1158/1078-0432.CCR-07-5074 18794082

80. Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV (2005) RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res 65: 6719–6725. 16061653

81. Chajes V, Cambot M, Moreau K, Lenoir GM, Joulin V (2006) Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res 66: 5287–5294. 16707454

82. Aytes A, Mitrofanova A, Kinkade CW, Lefebvre C, Lei M, et al. (2013) ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer. Proceedings of the National Academy of Sciences 110: E3506–E3515.

83. Pellecchia A, Pescucci C, De Lorenzo E, Luceri C, Passaro N, et al. (2012) Overexpression of ETV4 is oncogenic in prostate cells through promotion of both cell proliferation and epithelial to mesenchymal transition. Oncogenesis 1: e20. doi: 10.1038/oncsis.2012.20 23552736

84. Keld R, Guo B, Downey P, Cummins R, Gulmann C, et al. (2011) PEA3/ETV4-related transcription factors coupled with active ERK signalling are associated with poor prognosis in gastric adenocarcinoma. Br J Cancer 105: 124–130. doi: 10.1038/bjc.2011.187 21673681

85. Yuen H-F, Chan Y-K, Grills C, McCrudden CM, Gunasekharan V, et al. (2011) Polyomavirus enhancer activator 3 protein promotes breast cancer metastatic progression through Snail-induced epithelial—mesenchymal transition. The Journal of Pathology 224: 78–89. doi: 10.1002/path.2859 21404275

86. Schmaltz C, Hardenbergh PH, Wells A, Fisher DE (1998) Regulation of Proliferation-Survival Decisions during Tumor Cell Hypoxia. Molecular and Cellular Biology 18: 2845–2854. 9566903

87. Brunelle JK, Santore MT, Budinger GRS, Tang Y, Barrett TA, et al. (2004) c-Myc Sensitization to Oxygen Deprivation-induced Cell Death Is Dependent on Bax/Bak, but Is Independent of p53 and Hypoxia-inducible Factor–1. Journal of Biological Chemistry 279: 4305–4312. 14627695

88. Conacci-Sorrell M, Ngouenet C, Anderson S, Brabletz T, Eisenman RN (2014) Stress-induced cleavage of Myc promotes cancer cell survival. Genes & Development 28: 689–707.

89. Wong WJ, Qiu B, Nakazawa MS, Qing G, Simon MC (2013) MYC Degradation under Low O2 Tension Promotes Survival by Evading Hypoxia-Induced Cell Death. Molecular and Cellular Biology 33: 3494–3504. doi: 10.1128/MCB.00853-12 23816886

90. Guimaraes-Camboa N, Stowe J, Aneas I, Sakabe N, Cattaneo P, et al. (2015) HIF1alpha Represses Cell Stress Pathways to Allow Proliferation of Hypoxic Fetal Cardiomyocytes. Dev Cell 33: 507–521. doi: 10.1016/j.devcel.2015.04.021 26028220

91. Guimarães-Camboa N, Stowe J, Aneas I, Sakabe N, Cattaneo P, et al. HIF1α Represses Cell Stress Pathways to Allow Proliferation of Hypoxic Fetal Cardiomyocytes. Developmental Cell 33: 507–521. doi: 10.1016/j.devcel.2015.04.021 26028220

92. Suzuki K, Bose P, Leong-Quong RY, Fujita DJ, Riabowol K (2010) REAP: A two minute cell fractionation method. BMC Res Notes 3: 294. doi: 10.1186/1756-0500-3-294 21067583

93. Ferrara CT, Wang P, Neto EC, Stevens RD, Bain JR, et al. (2008) Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling. PLoS Genet 4: e1000034. doi: 10.1371/journal.pgen.1000034 18369453

94. An J, Muoio DM, Shiota M, Fujimoto Y, Cline GW, et al. (2004) Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat Med 10: 268–274. 14770177

95. Lamonte G, Tang X, Chen JL, Wu J, Ding CK, et al. (2013) Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab 1: 23. doi: 10.1186/2049-3002-1-23 24359630

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#