#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Single Strand Annealing Plays a Major Role in RecA-Independent Recombination between Repeated Sequences in the Radioresistant Bacterium


Deinococcus radiodurans is known for its exceptional ability to tolerate exposure to DNA damaging agents and, in particular, to very high doses of ionizing radiation. This exceptional radioresistance results from many features including efficient DNA double strand break repair. Here, we examine genome stability in D. radiodurans before and after exposure to ionizing radiation. Rearrangements between repeated sequences are a major source of genome instability and can be deleterious to the organism. Thus, we measured the frequency of recombination between direct repeats separated by intervening sequences of various lengths in the presence or absence of radiation-induced DNA double strand breaks. Strikingly, we showed that the frequency of deletions was as high in strains devoid of the RecA, RecF or RecO proteins as in wild type bacteria, suggesting a very efficient RecA-independent process able to generate genome rearrangements. Our results suggest that single strand annealing may play a major role in genome instability in the absence of homologous recombination.


Vyšlo v časopise: Single Strand Annealing Plays a Major Role in RecA-Independent Recombination between Repeated Sequences in the Radioresistant Bacterium. PLoS Genet 11(10): e32767. doi:10.1371/journal.pgen.1005636
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005636

Souhrn

Deinococcus radiodurans is known for its exceptional ability to tolerate exposure to DNA damaging agents and, in particular, to very high doses of ionizing radiation. This exceptional radioresistance results from many features including efficient DNA double strand break repair. Here, we examine genome stability in D. radiodurans before and after exposure to ionizing radiation. Rearrangements between repeated sequences are a major source of genome instability and can be deleterious to the organism. Thus, we measured the frequency of recombination between direct repeats separated by intervening sequences of various lengths in the presence or absence of radiation-induced DNA double strand breaks. Strikingly, we showed that the frequency of deletions was as high in strains devoid of the RecA, RecF or RecO proteins as in wild type bacteria, suggesting a very efficient RecA-independent process able to generate genome rearrangements. Our results suggest that single strand annealing may play a major role in genome instability in the absence of homologous recombination.


Zdroje

1. Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D, et al. (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443: 569–573. 17006450

2. Slade D, Lindner AB, Paul G, Radman M (2009) Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136: 1044–1055. doi: 10.1016/j.cell.2009.01.018 19303848

3. Bentchikou E, Servant P, Coste G, Sommer S (2010) A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans. PLoS Genet 6: e1000774. doi: 10.1371/journal.pgen.1000774 20090937

4. Bouthier de la Tour C, Boisnard S, Norais C, Toueille M, Bentchikou E, et al. (2011) The deinococcal DdrB protein is involved in an early step of DNA double strand break repair and in plasmid transformation through its single-strand annealing activity. DNA Repair (Amst) 10: 1223–1231.

5. Norais CA, Chitteni-Pattu S, Wood EA, Inman RB, Cox MM (2009) An alternative Deinococcus radiodurans SSB induced by ionizing radiation: The DdrB protein. J Biol Chem.

6. Xu G, Lu H, Wang L, Chen H, Xu Z, et al. (2010) DdrB stimulates single-stranded DNA annealing and facilitates RecA-independent DNA repair in Deinococcus radiodurans. DNA Repair (Amst) 9: 805–812.

7. Mazin AV, Kuzminov AV, Dianov GL, Salganik RI (1991) Mechanisms of deletion formation in Escherichia coli plasmids. II. Deletions mediated by short direct repeats. Mol Gen Genet 228: 209–214. 1679526

8. Dianov GL, Kuzminov AV, Mazin AV, Salganik RI (1991) Molecular mechanisms of deletion formation in Escherichia coli plasmids. I. Deletion formation mediated by long direct repeats. Mol Gen Genet 228: 153–159. 1679524

9. Bi X, Liu LF (1994) recA-independent and recA-dependent intramolecular plasmid recombination. Differential homology requirement and distance effect. J Mol Biol 235: 414–423. 8289271

10. Lovett ST, Gluckman TJ, Simon PJ, Sutera VA Jr., Drapkin PT (1994) Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism. Mol Gen Genet 245: 294–300. 7816039

11. Bierne H, Vilette D, Ehrlich SD, Michel B (1997) Isolation of a dnaE mutation which enhances RecA-independent homologous recombination in the Escherichia coli chromosome. Mol Microbiol 24: 1225–1234. 9218771

12. Saveson CJ, Lovett ST (1997) Enhanced deletion formation by aberrant DNA replication in Escherichia coli. Genetics 146: 457–470. 9177997

13. Saveson CJ, Lovett ST (1999) Tandem repeat recombination induced by replication fork defects in Escherichia coli requires a novel factor, RadC. Genetics 152: 5–13. 10224240

14. Michel B (2000) Replication fork arrest and DNA recombination. Trends Biochem Sci 25: 173–178. 10754549

15. Lovett ST (2004) Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52: 1243–1253. 15165229

16. Bzymek M, Lovett ST (2001) Evidence for two mechanisms of palindrome-stimulated deletion in Escherichia coli: single-strand annealing and replication slipped mispairing. Genetics 158: 527–540. 11404319

17. Nguyen HH, de la Tour CB, Toueille M, Vannier F, Sommer S, et al. (2009) The essential histone-like protein HU plays a major role in Deinococcus radiodurans nucleoid compaction. Mol Microbiol 73: 240–252. doi: 10.1111/j.1365-2958.2009.06766.x 19570109

18. Meima R, Lidstrom ME (2000) Characterization of the minimal replicon of a cryptic Deinococcus radiodurans SARK plasmid and development of versatile Escherichia coli-D. radiodurans shuttle vectors. Appl Environ Microbiol 66: 3856–3867. 10966401

19. Beam CE, Saveson CJ, Lovett ST (2002) Role for radA/sms in recombination intermediate processing in Escherichia coli. J Bacteriol 184: 6836–6844. 12446634

20. Cooper DL, Boyle DC, Lovett ST (2015) Genetic analysis of Escherichia coli RadA: functional motifs and genetic interactions. Mol Microbiol 95: 769–779. doi: 10.1111/mmi.12899 25484163

21. Konrad EB (1977) Method for the isolation of Escherichia coli mutants with enhanced recombination between chromosomal duplications. J Bacteriol 130: 167–172. 323226

22. Feinstein SI, Low KB (1986) Hyper-recombining recipient strains in bacterial conjugation. Genetics 113: 13–33. 3519362

23. Washburn BK, Kushner SR (1991) Construction and analysis of deletions in the structural gene (uvrD) for DNA helicase II of Escherichia coli. J Bacteriol 173: 2569–2575. 1849510

24. Morel P, Hejna JA, Ehrlich SD, Cassuto E (1993) Antipairing and strand transferase activities of E. coli helicase II (UvrD). Nucleic Acids Res 21: 3205–3209. 8341594

25. Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, et al. (2005) UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24: 180–189. 15565170

26. Cox MM, Battista JR (2005) Deinococcus radiodurans—the consummate survivor. Nat Rev Microbiol 3: 882–892. 16261171

27. Treangen TJ, Abraham AL, Touchon M, Rocha EP (2009) Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiol Rev 33: 539–571. 19396957

28. Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, et al. (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65: 44–79. 11238985

29. Marsin S, Mathieu A, Kortulewski T, Guerois R, Radicella JP (2008) Unveiling novel RecO distant orthologues involved in homologous recombination. PLoS Genet 4: e1000146. doi: 10.1371/journal.pgen.1000146 18670631

30. Bruand C, Bidnenko V, Ehrlich SD (2001) Replication mutations differentially enhance RecA-dependent and RecA-independent recombination between tandem repeats in Bacillus subtilis. Mol Microbiol 39: 1248–1258. 11251841

31. Thomas CA (1967) The recombination of DNA molecules. In: press TRU, editor. The Neurosciences A study program. New York. pp. 162–182.

32. Lin FL, Sperle K, Sternberg N (1984) Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol Cell Biol 4: 1020–1034. 6330525

33. Mezard C, Nicolas A (1994) Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 14: 1278–1292. 8289807

34. Grimme JM, Honda M, Wright R, Okuno Y, Rothenberg E, et al. (2010) Human Rad52 binds and wraps single-stranded DNA and mediates annealing via two hRad52-ssDNA complexes. Nucleic Acids Res 38: 2917–2930. doi: 10.1093/nar/gkp1249 20081207

35. Rothenberg E, Grimme JM, Spies M, Ha T (2008) Human Rad52-mediated homology search and annealing occurs by continuous interactions between overlapping nucleoprotein complexes. Proc Natl Acad Sci U S A 105: 20274–20279. doi: 10.1073/pnas.0810317106 19074292

36. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63: 349–404. 10357855

37. Sugiman-Marangos S, Junop MS (2010) The structure of DdrB from Deinococcus: a new fold for single-stranded DNA binding proteins. Nucleic Acids Res 38: 3432–3440. doi: 10.1093/nar/gkq036 20129942

38. Sugiman-Marangos SN, Peel JK, Weiss YM, Ghirlando R, Junop MS (2013) Crystal structure of the DdrB/ssDNA complex from Deinococcus radiodurans reveals a DNA binding surface involving higher-order oligomeric states. Nucleic Acids Res 41: 9934–9944. doi: 10.1093/nar/gkt759 23975200

39. Shinohara A, Shinohara M, Ohta T, Matsuda S, Ogawa T (1998) Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3: 145–156. 9619627

40. Sugiyama T, New JH, Kowalczykowski SC (1998) DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci U S A 95: 6049–6054. 9600915

41. Lockhart JS, DeVeaux LC (2013) The essential role of the Deinococcus radiodurans ssb gene in cell survival and radiation tolerance. PLoS One 8: e71651. doi: 10.1371/journal.pone.0071651 23951213

42. Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL (2008) SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 43: 289–318. doi: 10.1080/10409230802341296 18937104

43. Inoue J, Honda M, Ikawa S, Shibata T, Mikawa T (2008) The process of displacing the single-stranded DNA-binding protein from single-stranded DNA by RecO and RecR proteins. Nucleic Acids Res 36: 94–109. 18000001

44. Hobbs MD, Sakai A, Cox MM (2007) SSB protein limits RecOR binding onto single-stranded DNA. J Biol Chem 282: 11058–11067. 17272275

45. Reams AB, Kofoid E, Duleba N, Roth JR (2014) Recombination and annealing pathways compete for substrates in making rrn duplications in Salmonella enterica. Genetics 196: 119–135. doi: 10.1534/genetics.113.158519 24214339

46. Atkinson J, McGlynn P (2009) Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res 37: 3475–3492. doi: 10.1093/nar/gkp244 19406929

47. Bierne H, Seigneur M, Ehrlich SD, Michel B (1997) uvrD mutations enhance tandem repeat deletion in the Escherichia coli chromosome via SOS induction of the RecF recombination pathway. Mol Microbiol 26: 557–567. 9402025

48. Zieg J, Maples VF, Kushner SR (1978) Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes. J Bacteriol 134: 958–966. 350859

49. Arthur HM, Lloyd RG (1980) Hyper-recombination in uvrD mutants of Escherichia coli K-12. Mol Gen Genet 180: 185–191. 7003307

50. Ossanna N, Mount DW (1989) Mutations in uvrD induce the SOS response in Escherichia coli. J Bacteriol 171: 303–307. 2536658

51. Yancey-Wrona JE, Wood ER, George JW, Smith KR, Matson SW (1992) Escherichia coli Rep protein and helicase IV. Distributive single-stranded DNA-dependent ATPases that catalyze a limited unwinding reaction in vitro. Eur J Biochem 207: 479–485. 1321715

52. Guy CP, Atkinson J, Gupta MK, Mahdi AA, Gwynn EJ, et al. (2009) Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol Cell 36: 654–666. doi: 10.1016/j.molcel.2009.11.009 19941825

53. Atkinson J, Gupta MK, McGlynn P (2011) Interaction of Rep and DnaB on DNA. Nucleic Acids Res 39: 1351–1359. doi: 10.1093/nar/gkq975 20959294

54. Lane HE, Denhardt DT (1975) The rep mutation. IV. Slower movement of replication forks in Escherichia coli rep strains. J Mol Biol 97: 99–112. 1100854

55. Taucher-Sholz G, Abdel-Monem M, Hoffman-Berling H (1983) Function of DNA helicases in E. coli. In: Cozarelli NR, editor. Mechanisms of DNA replication and recombination: Alan, R. Liss, Inc., New York. pp. 65–76.

56. Boubakri H, de Septenville AL, Viguera E, Michel B (2010) The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J 29: 145–157. doi: 10.1038/emboj.2009.308 19851282

57. Flores MJ, Bidnenko V, Michel B (2004) The DNA repair helicase UvrD is essential for replication fork reversal in replication mutants. EMBO Rep 5: 983–988. 15375374

58. Flores MJ, Sanchez N, Michel B (2005) A fork-clearing role for UvrD. Mol Microbiol 57: 1664–1675. 16135232

59. Jiao J, Wang L, Xia W, Li M, Sun H, et al. (2012) Function and biochemical characterization of RecJ in Deinococcus radiodurans. DNA Repair (Amst) 11: 349–356.

60. Montelone BA, Malone RE (1994) Analysis of the rad3-101 and rad3-102 mutations of Saccharomyces cerevisiae: implications for structure/function of Rad3 protein. Yeast 10: 13–27. 8203147

61. Daly MJ, Ling O, Minton KW (1994) Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 176: 7506–7515. 8002574

62. Daly MJ, Minton KW (1995) Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans. J Bacteriol 177: 5495–5505. 7559335

63. Daly MJ, Minton KW (1996) An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 178: 4461–4471. 8755873

64. Repar J, Cvjetan S, Slade D, Radman M, Zahradka D, et al. (2010) RecA protein assures fidelity of DNA repair and genome stability in Deinococcus radiodurans. DNA Repair (Amst) 9: 1151–1161.

65. Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, et al. (2000) The importance of repairing stalled replication forks. Nature 404: 37–41. 10716434

66. Kuzminov A (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63: 751–813, table of contents. 10585965

67. Kuzminov A (1995) Instability of inhibited replication forks in E. coli. Bioessays 17: 733–741. 7661854

68. Michel B, Ehrlich SD, Uzest M (1997) DNA double-strand breaks caused by replication arrest. EMBO J 16: 430–438. 9029161

69. Meima R, Rothfuss HM, Gewin L, Lidstrom ME (2001) Promoter cloning in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 183: 3169–3175. 11325946

70. Bonacossa de Almeida C, Coste G, Sommer S, Bailone A (2002) Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol Genet Genomics 268: 28–41. 12242496

71. Mennecier S, Coste G, Servant P, Bailone A, Sommer S (2004) Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radiodurans. Mol Genet Genomics 272: 460–469. 15503140

72. Bentchikou E, Servant P, Coste G, Sommer S (2007) Additive effects of SbcCD and PolX deficiencies in the in vivo repair of DNA double strand breaks in Deinococcus radiodurans. J Bacteriol.

73. Devigne A, Ithurbide S, Bouthier de la Tour C, Passot F, Mathieu M, et al. (2015) DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistant Deinococcus radiodurans bacterium. Mol Microbiol.

74. Satoh K, Kikuchi M, Ishaque AM, Ohba H, Yamada M, et al. (2012) The role of Deinococcus radiodurans RecFOR proteins in homologous recombination. DNA Repair (Amst) 11: 410–418.

75. Dunn OJ (1964) Multiple Comparisons Using Rank Sums. Technometrics 6: 241–252.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#