#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization


In the environment, bacteria compete for privileged access to nutrients or to a particular niche. Bacteria have therefore evolved mechanisms to eliminate competitors. Among them, the Type VI secretion system (T6SS) is a contractile machine functionally comparable to a crossbow: an inner tube is wrapped by a contractile structure. Upon contraction of this outer sheath, the inner tube is propelled towards the target cell and delivers anti-bacterial effectors. The tubular structure assembles on a protein complex called the baseplate. Here we define the composition of the baseplate, demonstrating that it is composed of five subunits: TssE, TssF, TssG, TssK and VgrG. We further detail the role of the TssF and TssG proteins by defining their localizations and identifying their partners. We show that, in addition to TssE and VgrG that have been shown to share homologies with the bacteriophage gp25 and gp27-gp5 proteins, the TssF and TssG proteins also have homologies with bacteriophage components. Finally, we show that this baseplate is recruited to the TssJLM membrane complex prior to the assembly of the contractile tail structure. This study allows a better understanding of the early events of the assembly pathway of this molecular weapon.


Vyšlo v časopise: The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization. PLoS Genet 11(10): e32767. doi:10.1371/journal.pgen.1005545
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005545

Souhrn

In the environment, bacteria compete for privileged access to nutrients or to a particular niche. Bacteria have therefore evolved mechanisms to eliminate competitors. Among them, the Type VI secretion system (T6SS) is a contractile machine functionally comparable to a crossbow: an inner tube is wrapped by a contractile structure. Upon contraction of this outer sheath, the inner tube is propelled towards the target cell and delivers anti-bacterial effectors. The tubular structure assembles on a protein complex called the baseplate. Here we define the composition of the baseplate, demonstrating that it is composed of five subunits: TssE, TssF, TssG, TssK and VgrG. We further detail the role of the TssF and TssG proteins by defining their localizations and identifying their partners. We show that, in addition to TssE and VgrG that have been shown to share homologies with the bacteriophage gp25 and gp27-gp5 proteins, the TssF and TssG proteins also have homologies with bacteriophage components. Finally, we show that this baseplate is recruited to the TssJLM membrane complex prior to the assembly of the contractile tail structure. This study allows a better understanding of the early events of the assembly pathway of this molecular weapon.


Zdroje

1. Russell AB, Peterson SB, Mougous JD (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol. 12: 137–48. doi: 10.1038/nrmicro3185 24384601

2. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics. 10:104. doi: 10.1186/1471-2164-10-104 19284603

3. Coulthurst SJ (2013) The Type VI secretion system—a widespread and versatile cell targeting system. Res Microbiol. 164: 640–54. doi: 10.1016/j.resmic.2013.03.017 23542428

4. Borgeaud S, Metzger LC, Scrignari T, Blokesch M (2015) The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 347:63–7. doi: 10.1126/science.1260064 25554784

5. Benz J, Meinhart A (2014) Antibacterial effector/immunity systems: it's just the tip of the iceberg. Curr Opin Microbiol. 17: 1–10. doi: 10.1016/j.mib.2013.11.002 24581686

6. Durand E, Cambillau C, Cascales E, Journet L (2014) VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol. 22:498–507. doi: 10.1016/j.tim.2014.06.004 25042941

7. LeRoux M, De Leon JA, Kuwada NJ, Russell AB, Pinto-Santini D, et al. (2012) Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proc Natl Acad Sci USA. 109: 19804–9. doi: 10.1073/pnas.1213963109 23150540

8. Basler M, Ho BT, Mekalanos JJ (2013) Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell. 152: 884–94. doi: 10.1016/j.cell.2013.01.042 23415234

9. Brunet YR, Espinosa L, Harchouni S, Mignot T, Cascales E (2013) Imaging type VI secretion-mediated bacterial killing. Cell Rep. 3: 36–41. doi: 10.1016/j.celrep.2012.11.027 23291094

10. Cascales E, Cambillau C (2012) Structural biology of type VI secretion systems. Philos Trans R Soc Lond B Biol Sci. 367: 1102–11. doi: 10.1098/rstb.2011.0209 22411981

11. Ho BT, Dong TG, Mekalanos JJ (2014) A view to a kill: the bacterial type VI secretion system. Cell Host Microbe. 15: 9–21. doi: 10.1016/j.chom.2013.11.008 24332978

12. Zoued A, Brunet YR, Durand E, Aschtgen MS, Logger L, et al. (2014) Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta. 1843: 1664–73. doi: 10.1016/j.bbamcr.2014.03.018 24681160

13. Aschtgen MS, Gavioli M, Dessen A, Lloubès R, Cascales E (2010) The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol. 75:886–99. doi: 10.1111/j.1365-2958.2009.07028.x 20487285

14. Felisberto-Rodrigues C, Durand E, Aschtgen MS, Blangy S, Ortiz-Lombardia M, et al. (2011) Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog. 7: e1002386. doi: 10.1371/journal.ppat.1002386 22102820

15. Durand E, Nguyen VS, Zoued A, Logger L, Péhau-Arnaudet G, et al. (2015) Biogenesis and structure of the Type VI secretion membrane core complex. Nature. 523: 555–560. doi: 10.1038/nature14667 26200339

16. Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, et al. (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA. 106: 4154–9. doi: 10.1073/pnas.0813360106 19251641

17. Ballister ER, Lai AH, Zuckermann RN, Cheng Y, Mougous JD (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci USA. 105:3733–8. doi: 10.1073/pnas.0712247105 18310321

18. Brunet YR, Hénin J, Celia H, Cascales E (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15: 315–21. doi: 10.1002/embr.201337936 24488256

19. Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, et al. (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500: 350–3. doi: 10.1038/nature12453 23925114

20. Kanamaru S (2009) Structural similarity of tailed phages and pathogenic bacterial secretion systems. Proc Natl Acad Sci USA. 106: 4067–8. doi: 10.1073/pnas.0901205106 19276114

21. Bönemann G, Pietrosiuk A, Mogk A (2010) Tubules and donuts: a type VI secretion story. Mol Microbiol. 76:815–21. doi: 10.1111/j.1365-2958.2010.07171.x 20444095

22. Leiman PG, Shneider MM (2012) Contractile tail machines of bacteriophages. Adv Exp Med Biol. 726: 93–114. doi: 10.1007/978-1-4614-0980-9_5 22297511

23. Kube S, Kapitein N, Zimniak T, Herzog F, Mogk A, et al. (2014) Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep. 8: 20–30. doi: 10.1016/j.celrep.2014.05.034 24953649

24. Clemens DL, Ge P, Lee BY, Horwitz MA, Zhou ZH. (2015) Atomic structure of T6SS reveals interlaced array essential to function. Cell. 160: 940–951. doi: 10.1016/j.cell.2015.02.005 25723168

25. Kudryashev M, Wang RY, Brackmann M, Scherer S, Maier T, et al. (2015) Structure of the Type VI secretion system contractile sheath. Cell. 160: 952–962. doi: 10.1016/j.cell.2015.01.037 25723169

26. Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature. 483: 182–6. doi: 10.1038/nature10846 22367545

27. Kapitein N, Bönemann G, Pietrosiuk A, Seyffer F, Hausser I, et al. (2013). ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol. 87: 1013–28. doi: 10.1111/mmi.12147 23289512

28. Kapitein N, Mogk A (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol. 16: 52–8. doi: 10.1016/j.mib.2012.11.009 23290191

29. Kostyuchenko VA, Leiman PG, Chipman PR, Kanamaru S, van Raaij MJ, et al. (2003) Three-dimensional structure of bacteriophage T4 baseplate. Nat Struct Biol. 10: 688–93. 12923574

30. Kostyuchenko VA, Chipman PR, Leiman PG, Arisaka F, Mesyanzhinov VV, et al. (2005) The tail structure of bacteriophage T4 and its mechanism of contraction. Nat Struct Mol Biol. 12: 810–3. 16116440

31. Leiman PG, Arisaka F, van Raaij MJ, Kostyuchenko VA, Aksyuk AA, et al. (2010) Morphogenesis of the T4 tail and tail fibers. Virol J. 7: 355. doi: 10.1186/1743-422X-7-355 21129200

32. Haggård-Ljungquist E, Jacobsen E, Rishovd S, Six EW, Nilssen O, et al. (1995) Bacteriophage P2: genes involved in baseplate assembly. Virology. 213: 109–21. 7483254

33. Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, et al. (2012) Bacteriophage protein-protein interactions. Adv Virus Res. 83: 219–98. doi: 10.1016/B978-0-12-394438-2.00006-2 22748812

34. King J (1968) Assembly of the tail of bacteriophage T4. J Mol Biol. 32: 231–62. 4868421

35. Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner's guide. Curr Opin Microbiol. 11: 3–8. doi: 10.1016/j.mib.2008.01.006 18289922

36. Cascales E (2008) The type VI secretion toolkit. EMBO Rep. 9: 735–41. doi: 10.1038/embor.2008.131 18617888

37. Silverman JM, Brunet YR, Cascales E, Mougous JD (2012) Structure and regulation of the type VI secretion system. Annu Rev Microbiol. 66: 453–72. doi: 10.1146/annurev-micro-121809-151619 22746332

38. Lossi NS, Dajani R, Freemont P, Filloux A (2011) Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology. 157: 3292–305. doi: 10.1099/mic.0.051987-0 21873404

39. Yap ML, Mio K, Leiman PG, Kanamaru S, Arisaka F (2010) The baseplate wedges of bacteriophage T4 spontaneously assemble into hubless baseplate-like structure in vitro. J Mol Biol. 395: 349–60. doi: 10.1016/j.jmb.2009.10.071 19896486

40. Zoued A, Durand E, Bebeacua C, Brunet YR, Douzi B, et al. (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J Biol Chem. 288: 27031–41. doi: 10.1074/jbc.M113.499772 23921384

41. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33: W244–8. 15980461

42. Yamashita E, Nakagawa A, Takahashi J, Tsunoda K, Yamada S, et al. (2011) The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure. Acta Crystallogr Sect F Struct Biol Cryst Commun. 67: 837–41. doi: 10.1107/S1744309111005999 21821878

43. Kikuchi Y, King J (1975) Genetic control of bacteriophage T4 baseplate morphogenesis. II. Mutants unable to form the central part of the baseplate. J Mol Biol. 99: 673–94. 765482

44. Kikuchi Y, King J (1975) Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. J Mol Biol. 99: 695–716. 765483

45. Watts NR, Coombs DH (1989) Analysis of near-neighbor contacts in bacteriophage T4 wedges and hubless baseplates by using a cleavable chemical cross-linker. J Virol. 63: 2427–36. 2724408

46. English G, Byron O, Cianfanelli FR, Prescott AR, Coulthurst SJ (2014) Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex. Biochem J. 461: 291–304. doi: 10.1042/BJ20131426 24779861

47. Sarris PF, Ladoukakis ED, Panopoulos NJ, Scoulica EV (2014) A phage tail-derived element with wide distribution among both prokaryotic domains: a comparative genomic and phylogenetic study. Genome Biol Evol. 6: 1739–47. doi: 10.1093/gbe/evu136 25015235

48. Aksyuk AA, Leiman PG, Shneider MM, Mesyanzhinov VV, Rossmann MG (2009) The structure of gene product 6 of bacteriophage T4, the hinge-pin of the baseplate. Structure. 17: 800–8. doi: 10.1016/j.str.2009.04.005 19523898

49. Brunet YR, Bernard CS, Gavioli M, Lloubès R, Cascales E (2011) An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet. 7:e1002205. doi: 10.1371/journal.pgen.1002205 21829382

50. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 97: 6640–5. 10829079

51. Chaveroche MK, Ghigo JM, d'Enfert C (2000) A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 28: E97. 11071951

52. Aschtgen MS, Bernard CS, De Bentzmann S, Lloubès R, Cascales E (2008) SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol. 190: 7523–31. doi: 10.1128/JB.00945-08 18805985

53. van den Ent F, Löwe J (2006) RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods. 67: 67–74. 16480772

54. Karimova G, Pidoux J, Ullmann A, Ladant D (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA. 95: 5752–6. 9576956

55. Battesti A, Bouveret E (2012) The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods. 58: 325–34. doi: 10.1016/j.ymeth.2012.07.018 22841567

56. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods. 9: 676–682. doi: 10.1038/nmeth.2019 22743772

57. Cascales E, Lloubès R, Sturgis JN (2001) The TolQ-TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA-MotB. Mol Microbiol. 42: 795–807. 11722743

58. Raish J, Sivignon A, Chassaing B, Lapaquette P, Miquel S, et al. (2014) Arlette Darfeuille-Michaud: Researcher, Lecturer, Leader, Mentor and Friend. Gastroenterology 147: 943–944. doi: 10.1053/j.gastro.2014.08.009 25438798

59. Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43: D261–9. doi: 10.1093/nar/gku1223 25428365

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#