#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Regulation of Spore Formation by the SpoIIQ and SpoIIIA Proteins


The bacterial spore-forming pathogen Clostridium difficile is a leading cause of nosocomial infections in the United States and represents a significant threat to healthcare systems around the world. As an obligate anaerobe, C. difficile must form spores in order to survive exit from the gastrointestinal tract. Accordingly, spore formation is essential for C. difficile disease transmission. Since the mechanisms controlling this process remain poorly characterized, we analyzed the importance of highly conserved secretion channel components during C. difficile sporulation. In the model organism Bacillus subtilis, this channel had previously been shown to function as a “feeding tube” that allows the mother cell to nurture the developing forespore and sustain transcription in the forespore. We show here that conserved components of this structure in C. difficile are dispensable for forespore transcription, although they are important for completing forespore engulfment and retaining the protective spore coat around the forespore, in contrast with B. subtilis. The results of our study suggest that targeting these conserved proteins could prevent C. difficile spore formation and thus disease transmission.


Vyšlo v časopise: Regulation of Spore Formation by the SpoIIQ and SpoIIIA Proteins. PLoS Genet 11(10): e32767. doi:10.1371/journal.pgen.1005562
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005562

Souhrn

The bacterial spore-forming pathogen Clostridium difficile is a leading cause of nosocomial infections in the United States and represents a significant threat to healthcare systems around the world. As an obligate anaerobe, C. difficile must form spores in order to survive exit from the gastrointestinal tract. Accordingly, spore formation is essential for C. difficile disease transmission. Since the mechanisms controlling this process remain poorly characterized, we analyzed the importance of highly conserved secretion channel components during C. difficile sporulation. In the model organism Bacillus subtilis, this channel had previously been shown to function as a “feeding tube” that allows the mother cell to nurture the developing forespore and sustain transcription in the forespore. We show here that conserved components of this structure in C. difficile are dispensable for forespore transcription, although they are important for completing forespore engulfment and retaining the protective spore coat around the forespore, in contrast with B. subtilis. The results of our study suggest that targeting these conserved proteins could prevent C. difficile spore formation and thus disease transmission.


Zdroje

1. Higgins D, Dworkin J (2012) Recent progress in Bacillus subtilis sporulation. FEMS Microbiol Rev 36: 131–148. doi: 10.1111/j.1574-6976.2011.00310.x 22091839

2. McKenney PT, Driks A, Eichenberger P (2012) The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol. doi: 10.1038/nrmicro2921 23202530

3. Tan IS, Ramamurthi KS (2014) Spore formation in Bacillus subtilis. Environ Microbiol Rep 6: 212–225. doi: 10.1111/1758-2229.12130 24983526

4. Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. Journal of applied microbiology 101: 514–525. 16907802

5. Angert ER, Losick RM (1998) Propagation by sporulation in the guinea pig symbiont Metabacterium polyspora. Proc Natl Acad Sci U S A 95: 10218–10223. 9707627

6. Deakin LJ, Clare S, Fagan RP, Dawson LF, Pickard DJ, et al. (2012) The Clostridium difficile spo0A gene is a persistence and transmission factor. Infect Immun 80: 2704–2711. doi: 10.1128/IAI.00147-12 22615253

7. Carroll K, Bartlett J (2011) Biology of Clostridium difficile: implications for epidemiology and diagnosis. Annual review of microbiology 65: 501–521. doi: 10.1146/annurev-micro-090110-102824 21682645

8. Eyre DW, Wilcox MH, Walker AS (2014) Diverse sources of C. difficile infection. N Engl J Med 370: 183–184. doi: 10.1056/NEJMc1313601 24401066

9. Gupta A, Khanna S (2014) Community-acquired Clostridium difficile infection: an increasing public health threat. Infect Drug Resist 7: 63–72. doi: 10.2147/IDR.S46780 24669194

10. Rupnik M, Wilcox M, Gerding D (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nature reviews Microbiology 7: 526–536. doi: 10.1038/nrmicro2164 19528959

11. Howerton A, Patra M, Abel-Santos E (2013) Fate of ingested Clostridium difficile spores in mice. PLoS One 8: e72620. doi: 10.1371/journal.pone.0072620 24023628

12. Seekatz AM, Young VB (2014) Clostridium difficile and the microbiota. J Clin Invest 124: 4182–4189. doi: 10.1172/JCI72336 25036699

13. Janoir C, Deneve C, Bouttier S, Barbut F, Hoys S, et al. (2013) Adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics. Infect Immun 81: 3757–3769. doi: 10.1128/IAI.00515-13 23897605

14. Johnson S (2009) Recurrent Clostridium difficile infection: a review of risk factors, treatments, and outcomes. J Infect 58: 403–410. doi: 10.1016/j.jinf.2009.03.010 19394704

15. Maroo S, Lamont J (2006) Recurrent Clostridium difficile. Gastroenterology 130: 1311–1316. 16618421

16. Kelly C (2012) Can we identify patients at high risk of recurrent Clostridium difficile infection? Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases 18 Suppl 6: 21–27.

17. Fimlaid KA, Shen A (2015) Diverse Mechanisms Regulate Sporulation Sigma Factor Activity in the Firmicutes. Current Opinion in Microbiology. doi: 10.1016/j.mib.2015.01.006 25646759

18. Henriques AO, Moran CP Jr. (2007) Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol 61: 555–588. 18035610

19. Camp AH, Losick R (2009) A feeding tube model for activation of a cell-specific transcription factor during sporulation in Bacillus subtilis. Genes Dev 23: 1014–1024. doi: 10.1101/gad.1781709 19390092

20. Doan T, Morlot C, Meisner J, Serrano M, Henriques A, et al. (2009) Novel secretion apparatus maintains spore integrity and developmental gene expression in Bacillus subtilis. PLoS genetics 5. doi: 10.1371/journal.pgen.1000566 19609349

21. Meisner J, Wang X, Serrano M, Henriques A, Moran C (2008) A channel connecting the mother cell and forespore during bacterial endospore formation. Proceedings of the National Academy of Sciences of the United States of America 105: 15100–15105. doi: 10.1073/pnas.0806301105 18812514

22. Sun YL, Sharp MD, Pogliano K (2000) A dispensable role for forespore-specific gene expression in engulfment of the forespore during sporulation of Bacillus subtilis. J Bacteriol 182: 2919–2927. 10781563

23. Regan G, Itaya M, Piggot P (2012) Coupling of σG Activation to Completion of Engulfment during Sporulation of Bacillus subtilis Survives Large Perturbations to DNA Translocation and Replication. Journal of bacteriology 194: 6264–6271. doi: 10.1128/JB.01470-12 22984259

24. Rudner DZ, Losick R (2001) Morphological coupling in development: lessons from prokaryotes. Dev Cell 1: 733–742. 11740935

25. Partridge SR, Errington J (1993) The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol Microbiol 8: 945–955. 8355618

26. Saujet L, Pereira FC, Henriques AO, Martin-Verstraete I (2014) The regulatory network controlling spore formation in Clostridium difficile. FEMS Microbiol Lett 358: 1–10. doi: 10.1111/1574-6968.12540 25048412

27. Fimlaid KA, Bond JP, Schutz KC, Putnam EE, Leung JM, et al. (2013) Global Analysis of the Sporulation Pathway of Clostridium difficile. PLoS Genet 9: e1003660. doi: 10.1371/journal.pgen.1003660 23950727

28. Pereira FC, Saujet L, Tome AR, Serrano M, Monot M, et al. (2013) The Spore Differentiation Pathway in the Enteric Pathogen Clostridium difficile. PLoS Genet 9: e1003782. doi: 10.1371/journal.pgen.1003782 24098139

29. Saujet L, Pereira FC, Serrano M, Soutourina O, Monot M, et al. (2013) Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile. PLoS Genet 9: e1003756. doi: 10.1371/journal.pgen.1003756 24098137

30. Crawshaw AD, Serrano M, Stanley WA, Henriques AO, Salgado PS (2014) A mother cell-to-forespore channel: current understanding and future challenges. FEMS Microbiol Lett 358: 129–136. doi: 10.1111/1574-6968.12554 25105965

31. Abecasis AB, Serrano M, Alves R, Quintais L, Pereira-Leal JB, et al. (2013) A genomic signature and the identification of new sporulation genes. J Bacteriol 195: 2101–2115. doi: 10.1128/JB.02110-12 23396918

32. Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, et al. (2012) Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 14: 2870–2890. doi: 10.1111/j.1462-2920.2012.02841.x 22882546

33. Londono-Vallejo JA, Frehel C, Stragier P (1997) SpoIIQ, a forespore-expressed gene required for engulfment in Bacillus subtilis. Mol Microbiol 24: 29–39. 9140963

34. Meisner J, Moran CP Jr. (2011) A LytM domain dictates the localization of proteins to the mother cell-forespore interface during bacterial endospore formation. J Bacteriol 193: 591–598. doi: 10.1128/JB.01270-10 21097616

35. Blaylock B, Jiang X, Rubio A, Moran CP Jr., Pogliano K (2004) Zipper-like interaction between proteins in adjacent daughter cells mediates protein localization. Genes Dev 18: 2916–2928. 15574594

36. Rubio A, Pogliano K (2004) Septal localization of forespore membrane proteins during engulfment in Bacillus subtilis. EMBO J 23: 1636–1646. 15044948

37. Levdikov VM, Blagova EV, McFeat A, Fogg MJ, Wilson KS, et al. (2012) Structure of components of an intercellular channel complex in sporulating Bacillus subtilis. Proc Natl Acad Sci U S A 109: 5441–5445. doi: 10.1073/pnas.1120087109 22431604

38. Meisner J, Maehigashi T, Andre I, Dunham CM, Moran CP Jr. (2012) Structure of the basal components of a bacterial transporter. Proc Natl Acad Sci U S A 109: 5446–5451. doi: 10.1073/pnas.1120113109 22431613

39. Illing N, Errington J (1991) The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the sigma E form of RNA polymerase. Mol Microbiol 5: 1927–1940. 1766372

40. Camp AH, Losick R (2008) A novel pathway of intercellular signalling in Bacillus subtilis involves a protein with similarity to a component of type III secretion channels. Mol Microbiol 69: 402–417. doi: 10.1111/j.1365-2958.2008.06289.x 18485064

41. Broder DH, Pogliano K (2006) Forespore engulfment mediated by a ratchet-like mechanism. Cell 126: 917–928. 16959571

42. Heap J, Kuehne S, Ehsaan M, Cartman S, Cooksley C, et al. (2010) The ClosTron: Mutagenesis in Clostridium refined and streamlined. Journal of microbiological methods 80: 49–55. doi: 10.1016/j.mimet.2009.10.018 19891996

43. Guillot C, Moran CP Jr. (2007) Essential internal promoter in the spoIIIA locus of Bacillus subtilis. J Bacteriol 189: 7181–7189. 17693505

44. Heap J, Pennington O, Cartman S, Minton N (2009) A modular system for Clostridium shuttle plasmids. Journal of microbiological methods 78: 79–85. doi: 10.1016/j.mimet.2009.05.004 19445976

45. Putnam EE, Nock AM, Lawley TD, Shen A (2013) SpoIVA and SipL are Clostridium difficile spore morphogenetic proteins. J Bacteriol 195: 1214–1225. doi: 10.1128/JB.02181-12 23292781

46. Permpoonpattana P, Phetcharaburanin J, Mikelsone A, Dembek M, Tan S, et al. (2013) Functional characterization of Clostridium difficile spore coat proteins. Journal of bacteriology 195: 1492–1503. doi: 10.1128/JB.02104-12 23335421

47. Permpoonpattana P, Tolls E, Nadem R, Tan S, Brisson A, et al. (2011) Surface layers of Clostridium difficile endospores. Journal of bacteriology 193: 6461–6470. doi: 10.1128/JB.05182-11 21949071

48. Firczuk M, Bochtler M (2007) Folds and activities of peptidoglycan amidases. FEMS Microbiol Rev 31: 676–691. 17888003

49. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1: 945–951. 6329717

50. Story RM, Steitz TA (1992) Structure of the recA protein-ADP complex. Nature 355: 374–376. 1731253

51. Bell CE (2005) Structure and mechanism of Escherichia coli RecA ATPase. Mol Microbiol 58: 358–366. 16194225

52. Castaing J-P, Nagy A, Anantharaman V, Aravind L, Ramamurthi K (2013) ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein. Proceedings of the National Academy of Sciences of the United States of America 110: 60.

53. Gutierrez J, Smith R, Pogliano K (2010) SpoIID-mediated peptidoglycan degradation is required throughout engulfment during Bacillus subtilis sporulation. J Bacteriol 192: 3174–3186. doi: 10.1128/JB.00127-10 20382772

54. Meyer P, Gutierrez J, Pogliano K, Dworkin J (2010) Cell wall synthesis is necessary for membrane dynamics during sporulation of Bacillus subtilis. Mol Microbiol 76: 956–970. doi: 10.1111/j.1365-2958.2010.07155.x 20444098

55. Morlot C, Uehara T, Marquis KA, Bernhardt TG, Rudner DZ (2010) A highly coordinated cell wall degradation machine governs spore morphogenesis in Bacillus subtilis. Genes Dev 24: 411–422. doi: 10.1101/gad.1878110 20159959

56. Sogaard-Andersen L (2013) Stably bridging a great divide: localization of the SpoIIQ landmark protein in Bacillus subtilis. Mol Microbiol 89: 1019–1024. doi: 10.1111/mmi.12365 23944268

57. Turner RD, Vollmer W, Foster SJ (2014) Different walls for rods and balls: the diversity of peptidoglycan. Mol Microbiol 91: 862–874. doi: 10.1111/mmi.12513 24405365

58. Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S, et al. (2012) In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chem Int Ed Engl 51: 12519–12523. doi: 10.1002/anie.201206749 23055266

59. Siegrist MS, Whiteside S, Jewett JC, Aditham A, Cava F, et al. (2013) (D)-Amino acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogen. ACS Chem Biol 8: 500–505. doi: 10.1021/cb3004995 23240806

60. Breinbauer R, Kohn M (2003) Azide-alkyne coupling: a powerful reaction for bioconjugate chemistry. Chembiochem 4: 1147–1149. 14613105

61. Pogliano J, Osborne N, Sharp MD, Abanes-De Mello A, Perez A, et al. (1999) A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol Microbiol 31: 1149–1159. 10096082

62. Sharp MD, Pogliano K (1999) An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation. Proc Natl Acad Sci U S A 96: 14553–14558. 10588743

63. Courvalin P (2006) Vancomycin resistance in gram-positive cocci. Clin Infect Dis 42 Suppl 1: S25–34. 16323116

64. Rodloff AC, Goldstein EJ, Torres A (2006) Two decades of imipenem therapy. J Antimicrob Chemother 58: 916–929. 16997845

65. Tocheva EI, Lopez-Garrido J, Hughes HV, Fredlund J, Kuru E, et al. (2013) Peptidoglycan transformations during Bacillus subtilis sporulation. Mol Microbiol 88: 673–686. doi: 10.1111/mmi.12201 23531131

66. Sun DX, Cabrera-Martinez RM, Setlow P (1991) Control of transcription of the Bacillus subtilis spoIIIG gene, which codes for the forespore-specific transcription factor sigma G. J Bacteriol 173: 2977–2984. 1902213

67. Sterlini JM, Mandelstam J (1969) Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113: 29–37. 4185146

68. Ojkic N, Lopez-Garrido J, Pogliano K, Endres RG (2014) Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall. PLoS Comput Biol 10: e1003912. doi: 10.1371/journal.pcbi.1003912 25356555

69. McKenney PT, Eichenberger P (2012) Dynamics of spore coat morphogenesis in Bacillus subtilis. Mol Microbiol 83: 245–260. doi: 10.1111/j.1365-2958.2011.07936.x 22171814

70. O'Connor J, Lyras D, Farrow K, Adams V, Powell D, et al. (2006) Construction and analysis of chromosomal Clostridium difficile mutants. Molecular microbiology 61: 1335–1351. 16925561

71. Sebaihia M, Wren B, Mullany P, Fairweather N, Minton N, et al. (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature genetics 38: 779–786. 16804543

72. Sorg JA, Dineen SS (2009) Laboratory maintenance of Clostridium difficile. Curr Protoc Microbiol Chapter 9: Unit 9A 1.

73. Wilson KH, Kennedy MJ, Fekety FR (1982) Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J Clin Microbiol 15: 443–446. 7076817

74. Horton R, Hunt H, Ho S, Pullen J, Pease L (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77: 61–68. 2744488

75. Pishdadian K, Fimlaid KA, Shen A (2014) SpoIIID-mediated regulation of sigma function during Clostridium difficile sporulation. Mol Microbiol.

76. Pishdadian K, Fimlaid KA, Shen A (2015) SpoIIID-mediated regulation of sigma(K) function during Clostridium difficile sporulation. Mol Microbiol 95: 189–208. doi: 10.1111/mmi.12856 25393584

77. Doan T, Coleman J, Marquis KA, Meeske AJ, Burton BM, et al. (2013) FisB mediates membrane fission during sporulation in Bacillus subtilis. Genes Dev 27: 322–334. doi: 10.1101/gad.209049.112 23388828

78. Yutin N, Galperin MY (2013) A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15: 2631–2641. doi: 10.1111/1462-2920.12173 23834245

79. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39: W29–37. doi: 10.1093/nar/gkr367 21593126

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#