Closing the Gap between Knowledge and Clinical Application: Challenges for Genomic Translation
Despite early predictions and rapid progress in research, the introduction of personal genomics into clinical practice has been slow. Several factors contribute to this translational gap between knowledge and clinical application. The evidence available to support genetic test use is often limited, and implementation of new testing programs can be challenging. In addition, the heterogeneity of genomic risk information points to the need for strategies to select and deliver the information most appropriate for particular clinical needs. Accomplishing these tasks also requires recognition that some expectations for personal genomics are unrealistic, notably expectations concerning the clinical utility of genomic risk assessment for common complex diseases. Efforts are needed to improve the body of evidence addressing clinical outcomes for genomics, apply implementation science to personal genomics, and develop realistic goals for genomic risk assessment. In addition, translational research should emphasize the broader benefits of genomic knowledge, including applications of genomic research that provide clinical benefit outside the context of personal genomic risk.
Vyšlo v časopise:
Closing the Gap between Knowledge and Clinical Application: Challenges for Genomic Translation. PLoS Genet 11(2): e32767. doi:10.1371/journal.pgen.1004978
Kategorie:
Review
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004978
Souhrn
Despite early predictions and rapid progress in research, the introduction of personal genomics into clinical practice has been slow. Several factors contribute to this translational gap between knowledge and clinical application. The evidence available to support genetic test use is often limited, and implementation of new testing programs can be challenging. In addition, the heterogeneity of genomic risk information points to the need for strategies to select and deliver the information most appropriate for particular clinical needs. Accomplishing these tasks also requires recognition that some expectations for personal genomics are unrealistic, notably expectations concerning the clinical utility of genomic risk assessment for common complex diseases. Efforts are needed to improve the body of evidence addressing clinical outcomes for genomics, apply implementation science to personal genomics, and develop realistic goals for genomic risk assessment. In addition, translational research should emphasize the broader benefits of genomic knowledge, including applications of genomic research that provide clinical benefit outside the context of personal genomic risk.
Zdroje
1. Subramanian G, Adams MD, Venter JC, Broder S (2001) Implications of the human genome for understanding human biology and medicine. JAMA 286: 2296–2307. 11710896
2. Collins FS, McKusick VA (2001) Implications of the Human Genome Project for medical science. JAMA 285: 540–544. 11176855
3. Hayes DF, Khoury MJ, Ransohoff D (2012) Why Hasn’t Genomic Testing Changed the Landscape in Clinical Oncology? Am Soc Clin Oncol Educ Book: e52–55. doi: 10.14694/EdBook_AM.2012.32.e52 24451831
4. Khoury MJ (2010) Dealing with the evidence dilemma in genomics and personalized medicine. Clin Pharmacol Ther 87: 635–638. doi: 10.1038/clpt.2010.4 20485318
5. Korf BR, Berry AB, Limson M, Marian AJ, Murray MF, et al. (2014) Framework for development of physician competencies in genomic medicine: report of the Competencies Working Group of the Inter-Society Coordinating Committee for Physician Education in Genomics. Genet Med. 16: 804–809. doi: 10.1038/gim.2014.35 24763287
6. Bell GC, Crews KR, Wilkinson MR, Haidar CE, Hicks JK, et al. (2014) Development and use of active clinical decision support for preemptive pharmacogenomics. J Am Med Inform Assoc 21: e93–99. doi: 10.1136/amiajnl-2013-001993 23978487
7. Chaufan C (2007) How much can a large population study on genes, environments, their interactions and common diseases contribute to the health of the American people? Soc Sci Med 65: 1730–1741. 17618719
8. (2007) Recommendations from the EGAPP Working Group: testing for cytochrome P450 polymorphisms in adults with nonpsychotic depression treated with selective serotonin reuptake inhibitors. Genet Med 9: 819–825. 18091431
9. Bansal A, Critchfield GC, Frank TS, Reid JE, Thomas A, et al. (2000) The predictive value of BRCA1 and BRCA2 mutation testing. Genet Test 4: 45–48. 10794360
10. Burke W, Daly M, Garber J, Botkin J, Kahn MJ, et al. (1997) Recommendations for follow-up care of individuals with an inherited predisposition to cancer. II. BRCA1 and BRCA2. Cancer Genetics Studies Consortium. JAMA 277: 997–1003. 9091675
11. Goncalves R, Bose R (2013) Using multigene tests to select treatment for early-stage breast cancer. J Natl Compr Canc Netw 11: 174–182; quiz 182. 23411384
12. Carlson JJ, Roth JA (2013) The impact of the Oncotype Dx breast cancer assay in clinical practice: a systematic review and meta-analysis. Breast Cancer Res Treat 141: 13–22. doi: 10.1007/s10549-013-2666-z 23974828
13. (2014) Aetna Clinical Policy Bulletin: Tumor Markers. http://www.aetna.com/cpb/medical/data/300_399/0352.html. Accessed 4 August 2014.
14. Azim HA Jr., Michiels S, Zagouri F, Delaloge S, Filipits M, et al. (2013) Utility of prognostic genomic tests in breast cancer practice: The IMPAKT 2012 Working Group Consensus Statement. Ann Oncol 24: 647–654. doi: 10.1093/annonc/mds645 23337633
15. Mallal S, Phillips E, Carosi G, Molina JM, Workman C, et al. (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358: 568–579. doi: 10.1056/NEJMoa0706135 18256392
16. Lai-Goldman M, Faruki H (2008) Abacavir hypersensitivity: a model system for pharmacogenetic test adoption. Genet Med 10: 874–878. doi: 10.1097/GIM.0b013e31818de71c 19092439
17. Scott SA, Lubitz SA (2014) Warfarin pharmacogenetic trials: is there a future for pharmacogenetic-guided dosing? Pharmacogenomics 15: 719–722. doi: 10.2217/pgs.14.18 24897277
18. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, et al. (2013) A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med 369: 2283–2293. doi: 10.1056/NEJMoa1310669 24251361
19. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, et al. (2013) A randomized trial of genotype-guided dosing of warfarin. N Engl J Med 369: 2294–2303. doi: 10.1056/NEJMoa1311386 24251363
20. Topol EJ (2014) Individualized medicine from prewomb to tomb. Cell 157: 241–253. doi: 10.1016/j.cell.2014.02.012 24679539
21. (2012) Genome-Based Diagnostics: Clarifying pathways to Clinical Use: Workshop Summary. Washington, DC: Institute of Medicine.
22. Harvey EK, Fogel CE, Peyrot M, Christensen KD, Terry SF, et al. (2007) Providers’ knowledge of genetics: A survey of 5915 individuals and families with genetic conditions. Genet Med 9: 259–267. 17505202
23. Cragun D, Debate RD, Vadaparampil ST, Baldwin J, Hampel H, et al. (2014) Comparing universal Lynch syndrome tumor-screening programs to evaluate associations between implementation strategies and patient follow-through. Genet Med. 16: 773–782. doi: 10.1038/gim.2014.31 24651603
24. Palomaki GE, McClain MR, Melillo S, Hampel HL, Thibodeau SN (2009) EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet Med 11: 42–65. doi: 10.1097/GIM.0b013e31818fa2db 19125127
25. (2009) Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med 11: 35–41. doi: 10.1097/GIM.0b013e31818fa2ff 19125126
26. Moreira L, Balaguer F, Lindor N, de la Chapelle A, Hampel H, et al. (2012) Identification of Lynch syndrome among patients with colorectal cancer. JAMA 308: 1555–1565. doi: 10.1001/jama.2012.13088 23073952
27. Beamer LC, Grant ML, Espenschied CR, Blazer KR, Hampel HL, et al. (2012) Reflex immunohistochemistry and microsatellite instability testing of colorectal tumors for Lynch syndrome among US cancer programs and follow-up of abnormal results. J Clin Oncol 30: 1058–1063. doi: 10.1200/JCO.2011.38.4719 22355048
28. Kidambi TD, Blanco A, Myers M, Conrad P, Loranger K, et al. (2014) Selective Versus Universal Screening for Lynch Syndrome: A Six-Year Clinical Experience. Dig Dis Sci. Epub ahead of print.
29. Damschroder LJ, Aron DC, Keith RE, Kirsh SR, Alexander JA, et al. (2009) Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci 4: 50. doi: 10.1186/1748-5908-4-50 19664226
30. Crews KR, Hicks JK, Pui CH, Relling MV, Evans WE (2012) Pharmacogenomics and individualized medicine: translating science into practice. Clin Pharmacol Ther 92: 467–475. doi: 10.1038/clpt.2012.120 22948889
31. Ronquillo JG, Li C, Lester WT (2012) Genetic testing behavior and reporting patterns in electronic medical records for physicians trained in a primary care specialty or subspecialty. J Am Med Inform Assoc 19: 570–574. doi: 10.1136/amiajnl-2011-000621 22511017
32. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, et al. (2011) Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 89: 387–391. doi: 10.1038/clpt.2010.320 21270794
33. Yang Y, Muzny DM, Xia F, Niu Z, Person R, et al. (2014) Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 312: 1870–1879. doi: 10.1001/jama.2014.14601 25326635
34. Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, et al. (2014) Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 312: 1880–1887. doi: 10.1001/jama.2014.14604 25326637
35. Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, et al. (2011) Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med 13: 255–262. doi: 10.1097/GIM.0b013e3182088158 21173700
36. Patel CJ, Sivadas A, Tabassum R, Preeprem T, Zhao J, et al. (2013) Whole genome sequencing in support of wellness and health maintenance. Genome Med 5: 58. doi: 10.1186/gm462 23806097
37. Burke W, Psaty BM (2007) Personalized medicine in the era of genomics. JAMA 298: 1682–1684. 17925520
38. Langenberg C, Sharp SJ, Franks PW, Scott RA, Deloukas P, et al. (2014) Gene-lifestyle interaction and type 2 diabetes: the EPIC interact case-cohort study. PLoS Med 11: e1001647. doi: 10.1371/journal.pmed.1001647 24845081
39. Groop L, Pociot F (2014) Genetics of diabetes—are we missing the genes or the disease? Mol Cell Endocrinol 382: 726–739. doi: 10.1016/j.mce.2013.04.002 23587769
40. Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, et al. (2001) Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 345: 790–797. 11556298
41. Woolf SH (2007) Potential health and economic consequences of misplaced priorities. JAMA 297: 523–526. 17284703
42. Khoury MJ (2 July 2014) Nobody is average but what to do about it? Genomics and Health Impact Blog. http://blogs.cdc.gov/genomics/2014/07/02/nobody-is-average/. Accessed 4 August 2014.
43. Weintraub K (1 May 2014) CDC: Lifespan more to do with geography than genetics. USA Today. http://www.usatoday.com/story/news/nation/2014/05/01/preventable-deaths-cdc/8570951/. Accessed 4 August 2014.
44. Roberts NJ, Vogelstein JT, Parmigiani G, Kinzler KW, Vogelstein B, et al. (2012) The predictive capacity of personal genome sequencing. Sci Transl Med 4: 133ra 158.
45. Khoury MJ, Janssens AC, Ransohoff DF (2013) How can polygenic inheritance be used in population screening for common diseases? Genet Med 15: 437–443. doi: 10.1038/gim.2012.182 23412608
46. Woolf SH, Harris R (2012) The harms of screening: new attention to an old concern. JAMA 307: 565–566. doi: 10.1001/jama.2012.100 22318274
47. Khoury MJ, Gwinn ML, Glasgow RE, Kramer BS (2012) A population approach to precision medicine. Am J Prev Med 42: 639–645. doi: 10.1016/j.amepre.2012.02.012 22608383
48. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, et al. (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491: 119–124. doi: 10.1038/nature11582 23128233
49. Schramm EC, Clark SJ, Triebwasser MP, Raychaudhuri S, Seddon JM, et al. (2014) Genetic variants in the complement system predisposing to age-related macular degeneration: A review. Mol Immunol 61: 118–125 doi: 10.1016/j.molimm.2014.06.032 25034031
50. Yaghootkar H, Scott RA, White CC, Zhang W, Speliotes E, et al. (2014) Genetic evidence for a normal-weight “metabolically obese” phenotype linking insulin resistance, hypertension, coronary artery disease and type 2 diabetes. Diabetes 63: 4369–4377. doi: 10.2337/db14-0318 25048195
51. Herder C, Nuotio ML, Shah S, Blankenberg S, Brunner EJ, et al. (2014) Genetic determinants of circulating interleukin-1 receptor antagonist levels and their association with glycemic traits. Diabetes 63: 4343–4359. doi: 10.2337/db14-0731 24969107
52. Scott RA, Fall T, Pasko D, Barker A, Sharp SJ, et al. (2014) Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independently of obesity. Diabetes 63: 4378–4387. doi: 10.2337/db14-0319 24947364
53. Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90: 7–24. doi: 10.1016/j.ajhg.2011.11.029 22243964
54. Bakulski KM, Fallin MD (2014) Epigenetic epidemiology: promises for public health research. Environ Mol Mutagen 55: 171–183. doi: 10.1002/em.21850 24449392
55. Zimmer C (4 June 2014) In a first, test of DNA finds root of illness. New York Times. http://www.nytimes.com/2014/06/05/health/in-first-quick-dna-test-diagnoses-a-boys-illness.html?_r=0. Accessed 4 August 2014.
56. Fournier PE, Raoult D (2011) Prospects for the future using genomics and proteomics in clinical microbiology. Annu Rev Microbiol 65: 169–188. doi: 10.1146/annurev-micro-090110-102922 21639792
57. Kinross JM, Darzi AW, Nicholson JK (2011) Gut microbiome-host interactions in health and disease. Genome Med 3: 14. doi: 10.1186/gm228 21392406
58. Manolio TA, Chisholm RL, Ozenberger B, Roden DM, Williams MS, et al. (2013) Implementing genomic medicine in the clinic: the future is here. Genet Med 15: 258–267. doi: 10.1038/gim.2012.157 23306799
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 2
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genomic Selection and Association Mapping in Rice (): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines
- Discovery of Transcription Factors and Regulatory Regions Driving Tumor Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling
- Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene Prioritization and Construction of Informative Gene-Based Networks
- Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates