Pooled Sequencing of 531 Genes in Inflammatory Bowel Disease Identifies an Associated Rare Variant in and Implicates Other Immune Related Genes
Crohn’s disease and ulcerative colitis are two forms of inflammatory bowel disease which cause chronic inflammation of the gastrointestinal tract. Common genetic variants in more than 160 regions of the human genome have been associated with an altered risk of these disorders, but leave much of the estimated genetic contribution to disease risk unexplained. We sought to establish whether rare genetic variants which alter the structure or function of the proteins encoded by genes also contribute to disease susceptibility. We used high throughput DNA sequencing to screen over 500 genes for such variants in nearly 500 patients and controls, and validated interesting variants in about 10,000 patients and 7,000 controls. We detected association of a limited number of rare variants from coding regions with disease, suggesting that they do not account for a large proportion of genetic susceptibility. However, they highlight the involvement of genes of potential importance in the development of inflammatory bowel disease, including those involved in the activation of immune cells, the regulation of immune response genes, and the degradation of proteins in cells.
Vyšlo v časopise:
Pooled Sequencing of 531 Genes in Inflammatory Bowel Disease Identifies an Associated Rare Variant in and Implicates Other Immune Related Genes. PLoS Genet 11(2): e32767. doi:10.1371/journal.pgen.1004955
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004955
Souhrn
Crohn’s disease and ulcerative colitis are two forms of inflammatory bowel disease which cause chronic inflammation of the gastrointestinal tract. Common genetic variants in more than 160 regions of the human genome have been associated with an altered risk of these disorders, but leave much of the estimated genetic contribution to disease risk unexplained. We sought to establish whether rare genetic variants which alter the structure or function of the proteins encoded by genes also contribute to disease susceptibility. We used high throughput DNA sequencing to screen over 500 genes for such variants in nearly 500 patients and controls, and validated interesting variants in about 10,000 patients and 7,000 controls. We detected association of a limited number of rare variants from coding regions with disease, suggesting that they do not account for a large proportion of genetic susceptibility. However, they highlight the involvement of genes of potential importance in the development of inflammatory bowel disease, including those involved in the activation of immune cells, the regulation of immune response genes, and the degradation of proteins in cells.
Zdroje
1. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, et al, (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142: 46–54. doi: 10.1053/j.gastro.2011.10.001 22001864
2. Podolsky DK, (2002) Inflammatory bowel disease. N Engl J Med 347: 417–29. 12167685
3. Khor B, Gardet A, and Xavier RJ, (2011) Genetics and pathogenesis of inflammatory bowel disease. Nature 474: 307–17. doi: 10.1038/nature10209 21677747
4. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, et al, (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491: 119–24. doi: 10.1038/nature11582 23128233
5. Bodmer W and Bonilla C, (2008) Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 40: 695–701. doi: 10.1038/ng.f.136 18509313
6. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al, (2009) Finding the missing heritability of complex diseases. Nature 461: 747–53. doi: 10.1038/nature08494 19812666
7. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, et al, (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411: 599–603. 11385576
8. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, et al, (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411: 603–6. 11385577
9. Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, et al, (2001) Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 357: 1925–8. 11425413
10. Momozawa Y, Mni M, Nakamura K, Coppieters W, Almer S, et al, (2011) Resequencing of positional candidates identifies low frequency IL23R coding variants protecting against inflammatory bowel disease. Nat Genet 43: 43–7. doi: 10.1038/ng.733 21151126
11. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, et al, (2011) Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet 43: 1066–73. doi: 10.1038/ng.952 21983784
12. Beaudoin M, Goyette P, Boucher G, Lo KS, Rivas MA, et al, (2013) Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genet doi: 10.1371/journal.pgen.1003723 24415959
13. Hunt KA, Mistry V, Bockett NA, Ahmad T, Ban M, et al, (2013) Negligible impact of rare autoimmune-locus coding-region variants on missing heritability. Nature 498: 232–5. doi: 10.1038/nature12170 23698362
14. Consortium TWTCC, (2007) Genome-wide Association Studies of 14,000 cases of Seven Common Human Diseases and 3,000 shared controls. Nature 447: 661. 17554300
15. Dadd T, Weale ME, and Lewis CM, (2009) A critical evaluation of genomic control methods for genetic association studies. Genet Epidemiol 33: 290–8. doi: 10.1002/gepi.20379 19051284
16. Yang X, Todd JA, Clayton D, and Wallace C, (2012) Extra-binomial variation approach for analysis of pooled DNA sequencing data. Bioinformatics 28: 2898–904. doi: 10.1093/bioinformatics/bts553 22976083
17. King K, Sheikh MF, Cuthbert AP, Fisher SA, Onnie CM, et al, (2006) Mutation, selection, and evolution of the Crohn disease susceptibility gene CARD15. Hum Mutat 27: 44–54. 16278823
18. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al, (2010) A method and server for predicting damaging missense mutations. Nat Methods 7: 248–9. doi: 10.1038/nmeth0410-248 20354512
19. Kumar P, Henikoff S, and Ng PC, (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4: 1073–81. doi: 10.1038/nprot.2009.86 19561590
20. Pires DE, Ascher DB, and Blundell TL, (2014) mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30: 335–42. doi: 10.1093/bioinformatics/btt691 24281696
21. Yoon C, Johnston SC, Tang J, Stahl M, Tobin JF, et al, (2000) Charged residues dominate a unique interlocking topography in the heterodimeric cytokine interleukin-12. EMBO J 19: 3530–41. 10899108
22. Abeler-Dorner L, Swamy M, Williams G, Hayday AC, and Bas A, (2012) Butyrophilins: an emerging family of immune regulators. Trends Immunol 33: 34–41. doi: 10.1016/j.it.2011.09.007 22030238
23. Arnett HA, Escobar SS, Gonzalez-Suarez E, Budelsky AL, Steffen LA, et al, (2007) BTNL2, a butyrophilin/B7-like molecule, is a negative costimulatory molecule modulated in intestinal inflammation. J Immunol 178: 1523–33. 17237401
24. Swanson RM, Gavin MA, Escobar SS, Rottman JB, Lipsky BP, et al, (2013) Butyrophilin-like 2 modulates B7 costimulation to induce Foxp3 expression and regulatory T cell development in mature T cells. J Immunol 190: 2027–35. doi: 10.4049/jimmunol.1201760 23359506
25. Pathan S, Gowdy RE, Cooney R, Beckly JB, Hancock L, et al, (2009) Confirmation of the novel association at the BTNL2 locus with ulcerative colitis. Tissue Antigens 74: 322–9. doi: 10.1111/j.1399-0039.2009.01314.x 19659809
26. Adrianto I, Lin CP, Hale JJ, Levin AM, Datta I, et al, (2012) Genome-wide association study of African and European Americans implicates multiple shared and ethnic specific loci in sarcoidosis susceptibility. PLoS One 7: e43907. doi: 10.1371/journal.pone.0043907 22952805
27. Valentonyte R, Hampe J, Huse K, Rosenstiel P, Albrecht M, et al, (2005) Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat Genet 37: 357–64. 15735647
28. Mitsunaga S, Hosomichi K, Okudaira Y, Nakaoka H, Kunii N, et al, (2013) Exome sequencing identifies novel rheumatoid arthritis-susceptible variants in the BTNL2. J Hum Genet 58: 210–5. doi: 10.1038/jhg.2013.2 23364395
29. Reese MG, Eeckman FH, Kulp D, and Haussler D, (1997) Improved splice site detection in Genie. J Comput Biol 4: 311–23. 9278062
30. Backofen B, Jacob R, Serth K, Gossler A, Naim HY, et al, (2002) Cloning and characterization of the mammalian-specific nicolin 1 gene (NICN1) encoding a nuclear 24 kDa protein. Eur J Biochem 269: 5240–5. 12392556
31. Nejentsev S, Walker N, Riches D, Egholm M, and Todd JA, (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324: 387–9. doi: 10.1126/science.1167728 19264985
32. Johansen CT, Wang J, Lanktree MB, Cao H, McIntyre AD, et al, (2010) Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet 42: 684–7. doi: 10.1038/ng.628 20657596
33. Ogura Y, Saab L, Chen FF, Benito A, Inohara N, et al, (2003) Genetic variation and activity of mouse Nod2, a susceptibility gene for Crohn’s disease. Genomics 81: 369–77. 12676561
34. Kiezun A, Garimella K, Do R, Stitziel NO, Neale BM, et al, (2012) Exome sequencing and the genetic basis of complex traits. Nat Genet 44: 623–30. doi: 10.1038/ng.2303 22641211
35. Pruitt KD, Tatusova T, Klimke W, and Maglott DR, (2009) NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res 37: D32–6. doi: 10.1093/nar/gkn721 18927115
36. Flicek P, Amode MR, Barrell D, Beal K, Brent S, et al, (2011) Ensembl 2011. Nucleic Acids Res 39: D800–6. doi: 10.1093/nar/gkq1064 21045057
37. Prescott NJ, Fisher SA, Franke A, Hampe J, Onnie CM, et al, (2007) A Nonsynonymous SNP in ATG16L1 Predisposes to Ileal Crohn’s Disease and Is Independent of CARD15 and IBD5. Gastroenterology 132: 1665–1671. 17484864
38. Power C and Elliott J, (2006) Cohort profile: 1958 British birth cohort (National Child Development Study). Int J Epidemiol 35: 34–41. 16155052
39. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al, (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–9. doi: 10.1093/bioinformatics/btp352 19505943
40. Wysoker A, Tibbetts K, Fennell T, and Weisburd B, Picard Tools, 2009.
41. Wang K, Li M, and Hakonarson H, (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38: e164. doi: 10.1093/nar/gkq603 20601685
42. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al, (2007) PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am J Hum Genet 81: 559–575. 17701901
43. Dudbridge F, (2003) Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 25: 115–21. 12916020
44. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al, (2000) The Protein Data Bank. Nucleic Acids Res 28: 235–42. 10592235
45. Notredame C, Higgins DG, and Heringa J, (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302: 205–17. 10964570
46. Eswar N, Eramian D, Webb B, Shen MY, and Sali A, (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426: 145–59. doi: 10.1007/978-1-60327-058-8_8 18542861
47. Wellcome Trust Case Control Consortium, (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–678. 17554300
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 2
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genomic Selection and Association Mapping in Rice (): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines
- Discovery of Transcription Factors and Regulatory Regions Driving Tumor Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling
- Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene Prioritization and Construction of Informative Gene-Based Networks
- Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates