#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Elevated In Vivo Levels of a Single Transcription Factor Directly Convert Satellite Glia into Oligodendrocyte-like Cells


Developmental or acquired defects of oligodendrocytes or their myelin sheaths impairs saltatory nerve conduction in the central nervous system and thus leads to severe neurological diseases. Strategies to regenerate or replace these cells require a deeper understanding of the regulatory processes that underlie their generation during development. Here we show in a Sox10 overexpressing mouse model that increase of the levels of a single transcription factor during embryogenesis efficiently converts the already Sox10 expressing satellite glial cells of the peripheral nervous system into oligodendrocyte-like cells by a mechanism that does not simply recapitulate developmental oligodendrogenesis but involves direct Sox10-dependent induction of the oligodendroglial differentiation network. Our study identifies mechanisms that may help to convert other cell types into oligodendrocytes and thus prove eventually useful for therapies of myelin diseases.


Vyšlo v časopise: Elevated In Vivo Levels of a Single Transcription Factor Directly Convert Satellite Glia into Oligodendrocyte-like Cells. PLoS Genet 11(2): e32767. doi:10.1371/journal.pgen.1005008
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005008

Souhrn

Developmental or acquired defects of oligodendrocytes or their myelin sheaths impairs saltatory nerve conduction in the central nervous system and thus leads to severe neurological diseases. Strategies to regenerate or replace these cells require a deeper understanding of the regulatory processes that underlie their generation during development. Here we show in a Sox10 overexpressing mouse model that increase of the levels of a single transcription factor during embryogenesis efficiently converts the already Sox10 expressing satellite glial cells of the peripheral nervous system into oligodendrocyte-like cells by a mechanism that does not simply recapitulate developmental oligodendrogenesis but involves direct Sox10-dependent induction of the oligodendroglial differentiation network. Our study identifies mechanisms that may help to convert other cell types into oligodendrocytes and thus prove eventually useful for therapies of myelin diseases.


Zdroje

1. Patel M, Yang S (2010) Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem Cell Rev 6: 367–380. doi: 10.1007/s12015-010-9123-8 20336395

2. Ang CE, Wernig M (2014) Induced neuronal reprogramming. J Comp Neurol 522: 2877–2886. doi: 10.1002/cne.23620 24771471

3. Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, et al. (2013) Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol 31: 426–433. doi: 10.1038/nbt.2561 23584611

4. Yang N, Zuchero JB, Ahlenius H, Marro S, Ng YH, et al. (2013) Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol 31: 434–439. doi: 10.1038/nbt.2564 23584610

5. Hu BY, Du ZW, Zhang SC (2009) Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc 4: 1614–1622. doi: 10.1038/nprot.2009.186 19834476

6. Zhou Q, Anderson DJ (2002) The bHLH transcription factors olig2 and olig1 couple neuronal and glial subtype specification. Cell 109: 61–73. 11955447

7. Lu QR, Sun T, Zhu Z, Ma N, Garcia M, et al. (2002) Common developmental requirement for olig function indicates a motor neuron/oligodendrocyte connection. Cell 109: 75–86. 11955448

8. Hornig J, Fröb F, Vogl MR, Hermans-Borgmeyer I, Tamm ER, et al. (2013) The Transcription Factors Sox10 and Myrf Define an Essential Regulatory Network Module in Differentiating Oligodendrocytes. PLoS Genet 9: e1003644. doi: 10.1371/journal.pgen.1003644 23935512

9. Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, et al. (2002) Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 16: 165–170. 11799060

10. Finzsch M, Stolt CC, Lommes P, Wegner M (2008) Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor {alpha} expression. Development 135: 637–646. doi: 10.1242/dev.010454 18184726

11. Meijer DH, Kane MF, Mehta S, Liu H, Harrington E, et al. (2012) Separated at birth? The functional and molecular divergence of OLIG1 and OLIG2. Nat Rev Neurosci 13: 819–831. doi: 10.1038/nrn3386 23165259

12. Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M (1998) Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18: 237–250. 9412504

13. Wang J, Pol SU, Haberman AK, Wang C, O’Bara MA, et al. (2014) Transcription factor induction of human oligodendrocyte progenitor fate and differentiation. Proc Natl Acad Sci U S A 111: E2885–2894. doi: 10.1073/pnas.1408295111 24982138

14. Wang L, Sharma K, Deng HX, Siddique T, Grisotti G, et al. (2008) Restricted expression of mutant SOD1 in spinal motor neurons and interneurons induces motor neuron pathology. Neurobiol Dis 29: 400–408. 18054242

15. Matsuoka T, Ahlberg PE, Kessaris N, Iannarelli P, Dennehy U, et al. (2005) Neural crest origins of the neck and shoulder. Nature 436: 347–355. 16034409

16. Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, et al. (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15: 66–78. 11156606

17. Ludwig A, Schlierf B, Schardt A, Nave KA, Wegner M (2004) A Sox10 rtTA mouse line for tetracycline-inducible expression of transgenes in neural crest cells and oligodendrocytes. Genesis 40: 171–175. 15493017

18. Hjerling-Leffler J, Marmigere F, Heglind M, Cederberg A, Koltzenburg M, et al. (2005) The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development 132: 2623–2632. 15872002

19. Zujovic V, Thibaud J, Bachelin C, Vidal M, Deboux C, et al. (2011) Boundary cap cells are peripheral nervous system stem cells that can be redirected into central nervous system lineages. Proc Natl Acad Sci U S A 108: 10714–10719. doi: 10.1073/pnas.1018687108 21670295

20. Ahn K, Mishina Y, Hanks MC, Behringer RR, Crenshaw EB (2001) BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Development 128: 4449–4461. 11714671

21. Thein DC, Thalhammer JM, Hartwig AC, Crenshaw EB 3rd, Lefebvre V, et al. (2010) The closely related transcription factors Sox4 and Sox11 function as survival factors during spinal cord development. J Neurochem 115: 131–141. doi: 10.1111/j.1471-4159.2010.06910.x 20646169

22. Küspert M, Hammer A, Bösl MR, Wegner M (2011) Olig2 regulates Sox10 expression in oligodendrocyte precursors through an evolutionary conserved distal enhancer. Nucleic Acids Res 39: 1280–1293. doi: 10.1093/nar/gkq951 20959288

23. Lu QR, Park JK, Noll E, Chan JA, Alberta J, et al. (2001) Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors. Proc Natl Acad Sci USA 98: 10851–10859. 11526205

24. Zhou Q, Choi G, Anderson DJ (2001) The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31: 791–807. 11567617

25. Liu Z, Hu X, Cai J, Liu B, Peng X, et al. (2007) Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. Dev Biol 302: 683–693. 17098222

26. Oosterveen T, Kurdija S, Alekseenko Z, Uhde CW, Bergsland M, et al. (2012) Mechanistic differences in the transcriptional interpretation of local and long-range Shh morphogen signaling. Dev Cell 23: 1006–1019. doi: 10.1016/j.devcel.2012.09.015 23153497

27. Wegener A, Deboux C, Bachelin C, Frah M, Kerninon C, et al. (2015) Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination. Brain 138: 120–135. doi: 10.1093/brain/awu375 25564492

28. Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Rev 48: 457–476. 15914252

29. Humbertson A, Zimmermann E, Liddy M (1969) A chronological study of mitotic activity in satellite cell hyperplasia associated with chromatolytic neurons. Z Zellforsch 100: 507–515. 5351191

30. Fex Svenningsen A, Colman DR, Pedraza L (2004) Satellite cells of dorsal root ganglia are multipotential glial precursors. Neuron Glia Biol 1: 85–93. doi: 10.1017/S1740925X04000110 18634609

31. Weider M, Küspert M, Bischof M, Vogl MR, Hornig J, et al. (2012) Chromatin-remodeling factor Brg1 is required for Schwann cell differentiation and myelination. Dev Cell 23: 193–201. doi: 10.1016/j.devcel.2012.05.017 22814607

32. Weider M, Reiprich S, Wegner M (2013) Sox appeal—Sox10 attracts epigenetic and transcriptional regulators in myelinating glia. Biol Chem 394: 1583–1593. doi: 10.1515/hsz-2013-0146 23729567

33. Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, et al. (1998) Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci USA 95: 5161–5165. 9560246

34. Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu M- O, et al. (1998) Sox10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 18: 171–173. 9462749

35. Southard-Smith EM, Kos L, Pavan WJ (1998) Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18: 60–64. 9425902

36. Dupin E, Sommer L (2012) Neural crest progenitors and stem cells: from early development to adulthood. Dev Biol 366: 83–95. doi: 10.1016/j.ydbio.2012.02.035 22425619

37. Laranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, et al. (2011) Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest 121: 3412–3424. doi: 10.1172/JCI58200 21865647

38. Werner T, Hammer A, Wahlbuhl M, Bösl MR, Wegner M (2007) Multiple conserved regulatory elements with overlapping functions determine Sox10 expression in mouse embryogenesis. Nucleic Acids Res 35: 6526–6538. 17897962

39. Hoffmann SA, Hos D, Küspert M, Lang RA, Lovell-Badge R, et al. (2014) Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes. Development 141: 39–50. doi: 10.1242/dev.098418 24257626

40. Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8: 1323–1326. 9843687

41. Voiculescu O, Charnay P, Schneider-Maunoury S (2000) Expression pattern of a Krox-20/Cre knock-in allele in the developing hindbrain, bones, and peripheral nervous system. Genesis 26: 123–126. 10686605

42. Jaegle M, Ghazvini M, Mandemakers W, Piirsoo M, Driegen S, et al. (2003) The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes Dev 17: 1380–1391. 12782656

43. Maka M, Stolt CC, Wegner M (2005) Identification of Sox8 as a modifier gene in a mouse model of Hirschsprung disease reveals underlying molecular defect. Dev Biol 277: 155–169. 15572147

44. Stolt CC, Lommes P, Sock E, Chaboissier M- C, Schedl A, et al. (2003) The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17: 1677–1689. 12842915

45. Finzsch M, Schreiner S, Kichko T, Reeh P, Tamm ER, et al. (2010) Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage. J Cell Biol 189: 701–712. doi: 10.1083/jcb.200912142 20457761

46. Wang Z, Colognato H, ffrench-Constant C (2007) Contrasting effects of mitogenic growth factors on myelination in neuron-oligodendrocyte co-cultures. Glia 55: 537–545. 17236210

47. Schlierf B, Werner T, Glaser G, Wegner M (2006) Expression of Connexin47 in oligodendrocytes is regulated by the Sox10 transcription factor. J Mol Biol 361: 11–21. 16822525

48. Peirano RI, Goerich DE, Riethmacher D, Wegner M (2000) Protein zero expression is regulated by the glial transcription factor Sox10. Mol Cell Biol 20: 3198–3209. 10757804

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#