#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Modeling of the Human Alveolar Rhabdomyosarcoma Chromosome Translocation in Mouse Myoblasts Using CRISPR-Cas9 Nuclease


Many cancers carry recurrent chromosome translocations, which often result in the formation of fusion genes that are directly involved in the tumorigenic process. Alveolar rhabdomyosarcoma, a muscle tumor in children, is typified by a translocation that fuses the PAX3 gene on chromosome 2 to the FOXO1 gene on chromosome 13. For translocation to occur both genes need to break and the disparate ends need to fuse via a process called non-homologous end joining. We determined that physical proximity of Pax3 and Foxo1 in mouse muscle progenitor cells (myoblasts) facilitates fusion gene formation. Because Pax3 and Foxo1 in the mouse are in an opposite orientation, we used a chromosome engineering strategy to invert the orientation of Foxo1 so that upon translocation a productive Pax3-Foxo1 fusion gene is created. Co-localization of the Pax3 and Foxo1 loci is higher in fore limb than in hind limb myoblasts. Simultaneous induction of a targeted double strand DNA break in each gene by CRISPR-Cas9 nuclease generated more fusion genes in fore limb than in hind limb myoblasts. Thus, gene proximity facilitates fusion gene formation. We propose that CRISPR-Cas9 nuclease can be used for the precise modeling of chromosome translocations of human cancer in mice.


Vyšlo v časopise: Modeling of the Human Alveolar Rhabdomyosarcoma Chromosome Translocation in Mouse Myoblasts Using CRISPR-Cas9 Nuclease. PLoS Genet 11(2): e32767. doi:10.1371/journal.pgen.1004951
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004951

Souhrn

Many cancers carry recurrent chromosome translocations, which often result in the formation of fusion genes that are directly involved in the tumorigenic process. Alveolar rhabdomyosarcoma, a muscle tumor in children, is typified by a translocation that fuses the PAX3 gene on chromosome 2 to the FOXO1 gene on chromosome 13. For translocation to occur both genes need to break and the disparate ends need to fuse via a process called non-homologous end joining. We determined that physical proximity of Pax3 and Foxo1 in mouse muscle progenitor cells (myoblasts) facilitates fusion gene formation. Because Pax3 and Foxo1 in the mouse are in an opposite orientation, we used a chromosome engineering strategy to invert the orientation of Foxo1 so that upon translocation a productive Pax3-Foxo1 fusion gene is created. Co-localization of the Pax3 and Foxo1 loci is higher in fore limb than in hind limb myoblasts. Simultaneous induction of a targeted double strand DNA break in each gene by CRISPR-Cas9 nuclease generated more fusion genes in fore limb than in hind limb myoblasts. Thus, gene proximity facilitates fusion gene formation. We propose that CRISPR-Cas9 nuclease can be used for the precise modeling of chromosome translocations of human cancer in mice.


Zdroje

1. Meza JL, Anderson J, Pappo AS, Meyer WH, Children’s Oncology G (2006) Analysis of prognostic factors in patients with nonmetastatic rhabdomyosarcoma treated on intergroup rhabdomyosarcoma studies III and IV: the Children’s Oncology Group. J Clin Oncol 24: 3844–3851. doi: 10.1200/JCO.2005.05.3801 16921036

2. Marshall AD, Grosveld GC (2012) Alveolar rhabdomyosarcoma—The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skelet Muscle 2: 25. doi: 10.1186/2044-5040-2-25 23206814

3. Wexler LH, Ladanyi M (2010) Diagnosing alveolar rhabdomyosarcoma: morphology must be coupled with fusion confirmation. J Clin Oncol 28: 2126–2128. doi: 10.1200/JCO.2009.27.5339 20351321

4. Douglass EC, Valentine M, Etcubanas E, Parham D, Webber BL, et al. (1987) A specific chromosomal abnormality in rhabdomyosarcoma. Cytogenet Cell Genet 45: 148–155. doi: 10.1159/000132446 3691179

5. Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, et al. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36: 1065–1071. doi: 10.1038/ng1423 15361872

6. Lin C, Yang L, Tanasa B, Hutt K, Ju BG, et al. (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139: 1069–1083. doi: 10.1016/j.cell.2009.11.030 19962179

7. Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK, et al. (2009) Induced chromosomal proximity and gene fusions in prostate cancer. Science 326: 1230. doi: 10.1126/science.1178124 19933109

8. Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, et al. (2000) Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290: 138–141. doi: 10.1126/science.290.5489.138 11021799

9. Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, et al. (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 5: e192. doi: 10.1371/journal.pbio.0050192 17622196

10. Hakim O, Resch W, Yamane A, Klein I, Kieffer-Kwon KR, et al. (2012) DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature 484: 69–74. doi: 10.1038/nature10909 22314321

11. Zhang Y, McCord RP, Ho YJ, Lajoie BR, Hildebrand DG, et al. (2012) Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148: 908–921. doi: 10.1016/j.cell.2012.02.002 22341456

12. Barlow JH, Faryabi RB, Callen E, Wong N, Malhowski A, et al. (2013) Identification of early replicating fragile sites that contribute to genome instability. Cell 152: 620–632. doi: 10.1016/j.cell.2013.01.006 23352430

13. Ren YX, Finckenstein FG, Abdueva DA, Shahbazian V, Chung B, et al. (2008) Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 68: 6587–6597. doi: 10.1158/0008-5472.CAN-08-0859 18701482

14. Keller C, Hansen MS, Coffin CM, Capecchi MR (2004) Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev 18: 2608–2613. doi: 10.1101/gad.1243904 15520281

15. Abraham J, Nunez-Alvarez Y, Hettmer S, Carrio E, Chen HI, et al. (2014) Lineage of origin in rhabdomyosarcoma informs pharmacological response. Genes Dev 28: 1578–1591. doi: 10.1101/gad.238733.114 25030697

16. Lagha M, Sato T, Bajard L, Daubas P, Esner M, et al. (2008) Regulation of skeletal muscle stem cell behavior by Pax3 and Pax7. Cold Spring Harb Symp Quant Biol 73: 307–315. doi: 10.1101/sqb.2008.73.006 19022756

17. Linardic CM, Naini S, Herndon JE, 2nd, Kesserwan C, Qualman SJ, et al. (2007) The PAX3-FKHR fusion gene of rhabdomyosarcoma cooperates with loss of p16INK4A to promote bypass of cellular senescence. Cancer Res 67: 6691–6699. doi: 10.1158/0008-5472.CAN-06-3210 17638879

18. Calhabeu F, Hayashi S, Morgan JE, Relaix F, Zammit PS (2013) Alveolar rhabdomyosarcoma-associated proteins PAX3/FOXO1A and PAX7/FOXO1A suppress the transcriptional activity of MyoD-target genes in muscle stem cells. Oncogene 32: 651–662. doi: 10.1038/onc.2012.73 22710712

19. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, et al. (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172: 91–102. doi: 10.1083/jcb.200508044 16380438

20. Torres R, Martin MC, Garcia A, Cigudosa JC, Ramirez JC, et al. (2014) Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun 5: 3964. doi: 10.1038/ncomms4964 24888982

21. Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823. doi: 10.1126/science.1231143 23287718

22. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821. doi: 10.1126/science.1225829 22745249

23. Mali P, Yang L, Esvelt KM, Aach J, Guell M, et al. (2013) RNA-guided human genome engineering via Cas9. Science 339: 823–826. doi: 10.1126/science.1232033 23287722

24. Zuna J, Zaliova M, Muzikova K, Meyer C, Lizcova L, et al. (2010) Acute leukemias with ETV6/ABL1 (TEL/ABL) fusion: poor prognosis and prenatal origin. Genes Chromosomes Cancer 49: 873–884. doi: 10.1002/gcc.20796 20589932

25. Chick WS, Mentzer SE, Carpenter DA, Rinchik EM, You Y (2004) Modification of an existing chromosomal inversion to engineer a balancer for mouse chromosome 15. Genetics 167: 889–895. doi: 10.1534/genetics.104.026468 15238537

26. Klysik J, Dinh C, Bradley A (2004) Two new mouse chromosome 11 balancers. Genomics 83: 303–310. doi: 10.1016/j.ygeno.2003.08.011 14706459

27. Nishijima I, Mills A, Qi Y, Mills M, Bradley A (2003) Two new balancer chromosomes on mouse chromosome 4 to facilitate functional annotation of human chromosome 1p. Genesis 36: 142–148. doi: 10.1002/gene.10207 12872245

28. Zheng B, Mills AA, Bradley A (1999) A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice. Nucleic Acids Res 27: 2354–2360. doi: 10.1093/nar/27.11.2354 10325425

29. Zheng B, Sage M, Cai WW, Thompson DM, Tavsanli BC, et al. (1999) Engineering a mouse balancer chromosome. Nat Genet 22: 375–378. doi: 10.1038/11949 10431243

30. Lee EC (2003) Clinical manifestations of sarin nerve gas exposure. JAMA 290: 659–662. doi: 10.1001/jama.290.5.659 12902371

31. Siegel RW, Jain R, Bradbury A (2001) Using an in vivo phagemid system to identify non-compatible loxP sequences. FEBS Lett 505: 467–473. doi: 10.1016/S0014-5793(01)02806-X 11576551

32. Yang Y, Seed B (2003) Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat Biotechnol 21: 447–451. doi: 10.1038/nbt803 12627171

33. Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, et al. (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21: 652–659. doi: 10.1038/nbt822 12730667

34. Hanawa H, Hematti P, Keyvanfar K, Metzger ME, Krouse A, et al. (2004) Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. Blood 103: 4062–4069. doi: 10.1182/blood-2004-01-0045 14976042

35. Davicioni E, Finckenstein FG, Shahbazian V, Buckley JD, Triche TJ, et al. (2006) Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 66: 6936–6946. doi: 10.1158/0008-5472.CAN-05-4578 16849537

36. Marshall AD, van der Ent MA, Grosveld GC (2012) PAX3-FOXO1 and FGFR4 in alveolar rhabdomyosarcoma. Mol Carcinog 51: 807–815. doi: 10.1002/mc.20848 21882254

37. Smith AJ, De Sousa MA, Kwabi-Addo B, Heppell-Parton A, Impey H, et al. (1995) A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat Genet 9: 376–385. doi: 10.1038/ng0495-376 7795643

38. Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, et al. (2004) Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 18: 2614–2626. doi: 10.1101/gad.1244004 15489287

39. Xia SJ, Barr FG (2004) Analysis of the transforming and growth suppressive activities of the PAX3-FKHR oncoprotein. Oncogene 23: 6864–6871. doi: 10.1038/sj.onc.1207850 15286710

40. Marshall AD, Picchione F, Geltink RI, Grosveld GC (2013) PAX3-FOXO1 induces up-regulation of Noxa sensitizing alveolar rhabdomyosarcoma cells to apoptosis. Neoplasia 15: 738–748. 23814486

41. Lagutina I, Conway SJ, Sublett J, Grosveld GC (2002) Pax3-FKHR knock-in mice show developmental aberrations but do not develop tumors. Mol Cell Biol 22: 7204–7216. doi: 10.1128/MCB.22.20.7204-7216.2002 12242297

42. Relaix F, Polimeni M, Rocancourt D, Ponzetto C, Schafer BW, et al. (2003) The transcriptional activator PAX3-FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo. Genes Dev 17: 2950–2965. doi: 10.1101/gad.281203 14665670

43. Schnutgen F, Doerflinger N, Calleja C, Wendling O, Chambon P, et al. (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol 21: 562–565. doi: 10.1038/nbt811 12665802

44. Begum S, Emami N, Cheung A, Wilkins O, Der S, et al. (2005) Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 24: 1860–1872. doi: 10.1038/sj.onc.1208315 15688035

45. Neville HL, Andrassy RJ, Lobe TE, Bagwell CE, Anderson JR, et al. (2000) Preoperative staging, prognostic factors, and outcome for extremity rhabdomyosarcoma: a preliminary report from the Intergroup Rhabdomyosarcoma Study IV (1991–1997). J Pediatr Surg 35: 317–321. doi: 10.1016/S0022-3468(00)90031-9 10693687

46. Hanawa H, Persons DA, Nienhuis AW (2005) Mobilization and mechanism of transcription of integrated self-inactivating lentiviral vectors. J Virol 79: 8410–8421. doi: 10.1128/JVI.79.13.8410-8421.2005 15956585

47. Morgenstern JP, Land H (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 18: 3587–3596. doi: 10.1093/nar/18.12.3587 2194165

48. Lam PY, Sublett JE, Hollenbach AD, Roussel MF (1999) The oncogenic potential of the Pax3-FKHR fusion protein requires the Pax3 homeodomain recognition helix but not the Pax3 paired-box DNA binding domain. Mol Cell Biol 19: 594–601. 9858583

49. Anders S, Pyl PT, Huber W (2014) HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics.

50. Davicioni E (2006) Molecular classification, diagnosis and prognosis of pediatric rhabdomyosarcoma by oligonucleotide microarray analysis, PhD Thesis [PhD Thesis]. USC digital library, University of Southern California.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#