Fatty Acid Synthase Cooperates with Glyoxalase 1 to Protect against Sugar Toxicity
Consumption of sugar and lipid (fat) enriched food increases the risk of developing metabolic diseases and cancers. However, lipids are essential molecules for life, as they are the major components of cell membranes. Metabolism refers to biochemical reactions that transform nutrients into molecules required by an organism, although toxic by-products can also formed. Sugars or their derivatives are likely to induce toxic effects by forming stable conjugates with proteins. To neutralize their toxic potential, sugars are metabolized and stored as fat. Here, we have used the fruitfly model to investigate the consequences of lipogenesis deficiency upon ingestion of sugar-enriched diets. We show that lipogenesis deficient animals are dramatically sensitive to dietary sugar. Further, we have identified the sugar by-product responsible for intracellular toxicity, in the context of lipogenesis inhibition. Our study reveals that inhibiting lipogenesis does not disrupt cellular growth if extracellular lipids are available. In contrast lipogenesis inhibition may have deleterious consequences due to accumulation of toxic by-products. The efficacy of lipogenic inhibitors in fighting cancers and metabolic diseases is currently under investigation. Therefore, to evaluate the clinical benefit of these inhibitors, accumulation of the toxic molecules should be monitored in both sick and healthy cells.
Vyšlo v časopise:
Fatty Acid Synthase Cooperates with Glyoxalase 1 to Protect against Sugar Toxicity. PLoS Genet 11(2): e32767. doi:10.1371/journal.pgen.1004995
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004995
Souhrn
Consumption of sugar and lipid (fat) enriched food increases the risk of developing metabolic diseases and cancers. However, lipids are essential molecules for life, as they are the major components of cell membranes. Metabolism refers to biochemical reactions that transform nutrients into molecules required by an organism, although toxic by-products can also formed. Sugars or their derivatives are likely to induce toxic effects by forming stable conjugates with proteins. To neutralize their toxic potential, sugars are metabolized and stored as fat. Here, we have used the fruitfly model to investigate the consequences of lipogenesis deficiency upon ingestion of sugar-enriched diets. We show that lipogenesis deficient animals are dramatically sensitive to dietary sugar. Further, we have identified the sugar by-product responsible for intracellular toxicity, in the context of lipogenesis inhibition. Our study reveals that inhibiting lipogenesis does not disrupt cellular growth if extracellular lipids are available. In contrast lipogenesis inhibition may have deleterious consequences due to accumulation of toxic by-products. The efficacy of lipogenic inhibitors in fighting cancers and metabolic diseases is currently under investigation. Therefore, to evaluate the clinical benefit of these inhibitors, accumulation of the toxic molecules should be monitored in both sick and healthy cells.
Zdroje
1. Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148: 852–871. doi: 10.1016/j.cell.2012.02.017 22385956
2. Patel P, Abate N (2013) Role of subcutaneous adipose tissue in the pathogenesis of insulin resistance. J Obes 2013: 489187. doi: 10.1155/2013/489187 23691287
3. Chavez JA, Summers SA (2012) A ceramide-centric view of insulin resistance. Cell Metab 15: 585–594. doi: 10.1016/j.cmet.2012.04.002 22560211
4. Farese RV Jr., Zechner R, Newgard CB, Walther TC (2012) The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance. Cell Metab 15: 570–573. doi: 10.1016/j.cmet.2012.03.004 22560209
5. Taubes G (2009) Insulin resistance. Prosperity's plague. Science 325: 256–260. doi: 10.1126/science.325_256 19608888
6. Brookheart RT, Michel CI, Schaffer JE (2009) As a matter of fat. Cell Metab 10: 9–12. doi: 10.1016/j.cmet.2009.03.011 19583949
7. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7: 763–777. 17882277
8. Menendez JA, Vazquez-Martin A, Ortega FJ, Fernandez-Real JM (2009) Fatty acid synthase: association with insulin resistance, type 2 diabetes, and cancer. Clin Chem 55: 425–438. doi: 10.1373/clinchem.2008.115352 19181734
9. Brouwers O, Niessen PM, Ferreira I, Miyata T, Scheffer PG, et al. (2011) Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J Biol Chem 286: 1374–1380. doi: 10.1074/jbc.M110.144097 21056979
10. Giacco F, Du X, D'Agati VD, Milne R, Sui G, et al. (2014) Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice. Diabetes 63: 291–299. doi: 10.2337/db13-0316 24062246
11. Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114: 597–605. 16894049
12. Rabbani N, Thornalley PJ (2013) Glyoxalase in diabetes, obesity and related disorders. Semin Cell Dev Biol 22: 309–317.
13. Monnier VM, Cerami A (1981) Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211: 491–493. 6779377
14. Kalapos MP (2008) The tandem of free radicals and methylglyoxal. Chem Biol Interact 171: 251–271. doi: 10.1016/j.cbi.2007.11.009 18164697
15. Thornalley PJ (1993) The glyoxalase system in health and disease. Mol Aspects Med 14: 287–371. 8277832
16. Barber MC, Price NT, Travers MT (2005) Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim Biophys Acta 1733: 1–28. 15749055
17. Maier T, Leibundgut M, Ban N (2008) The crystal structure of a mammalian fatty acid synthase. Science 321: 1315–1322. doi: 10.1126/science.1161269 18772430
18. Baker KD, Thummel CS (2007) Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab 6: 257–266. 17908555
19. Kuhnlein RP (2012) Thematic review series: Lipid droplet synthesis and metabolism: from yeast to man. Lipid droplet-based storage fat metabolism in Drosophila. J Lipid Res 53: 1430–1436. doi: 10.1194/jlr.R024299 22566574
20. Rajan A, Perrimon N (2013) Of flies and men: insights on organismal metabolism from fruit flies. BMC Biol 11: 38. doi: 10.1186/1741-7007-11-38 23587196
21. Parvy JP, Napal L, Rubin T, Poidevin M, Perrin L, et al. (2012) Drosophila melanogaster Acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genet 8: e1002925. doi: 10.1371/journal.pgen.1002925 22956916
22. Gutierrez E, Wiggins D, Fielding B, Gould AP (2007) Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445: 275–280. 17136098
23. Chintapalli VR, Wang J, Dow JA (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39: 715–720. 17534367
24. Katewa SD, Demontis F, Kolipinski M, Hubbard A, Gill MS, et al. (2012) Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. Cell Metab 16: 97–103. doi: 10.1016/j.cmet.2012.06.005 22768842
25. Schnorrer F, Schonbauer C, Langer CC, Dietzl G, Novatchkova M, et al. (2010) Systematic genetic analysis of muscle morphogenesis and function in Drosophila. Nature 464: 287–291. doi: 10.1038/nature08799 20220848
26. Ruaud AF, Lam G, Thummel CS (2011) The Drosophila NR4A nuclear receptor DHR38 regulates carbohydrate metabolism and glycogen storage. Mol Endocrinol 25: 83–91. doi: 10.1210/me.2010-0337 21084378
27. Pasco MY, Leopold P (2012) High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo. PLoS One 7: e36583. doi: 10.1371/journal.pone.0036583 22567167
28. Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA (2002) Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev Cell 2: 239–249. 11832249
29. Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA (2001) Fat metabolism in insects. Annu Rev Nutr 21: 23–46. 11375428
30. Van Hoof D, Rodenburg KW, van der Horst DJ (2003) Lipophorin receptor-mediated lipoprotein endocytosis in insect fat body cells. J Lipid Res 44: 1431–1440. 12754276
31. Jensen-Urstad AP, Semenkovich CF (2012) Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochim Biophys Acta 1821: 747–753. doi: 10.1016/j.bbalip.2011.09.017 22009142
32. Nakamura MT, Yudell BE, Loor JJ (2014) Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 53: 124–144. doi: 10.1016/j.plipres.2013.12.001 24362249
33. Kunte AS, Matthews KA, Rawson RB (2006) Fatty acid auxotrophy in Drosophila larvae lacking SREBP. Cell Metab 3: 439–448. 16753579
34. Palm W, Sampaio JL, Brankatschk M, Carvalho M, Mahmoud A, et al. (2012) Lipoproteins in Drosophila melanogaster—assembly, function, and influence on tissue lipid composition. PLoS Genet 8: e1002828. doi: 10.1371/journal.pgen.1002828 22844248
35. Berry SE (2009) Triacylglycerol structure and interesterification of palmitic and stearic acid-rich fats: an overview and implications for cardiovascular disease. Nutr Res Rev 22: 3–17. doi: 10.1017/S0954422409369267 19442321
36. Michalski MC, Genot C, Gayet C, Lopez C, Fine F, et al. (2013) Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Prog Lipid Res 52: 354–373. doi: 10.1016/j.plipres.2013.04.004 23624223
37. Tomarelli RM, Meyer BJ, Weaber JR, Bernhart FW (1968) Effect of positional distribution on the absorption of the fatty acids of human milk and infant formulas. J Nutr 95: 583–590. 5665659
38. Innis SM, Dyer R, Nelson CM (1994) Evidence that palmitic acid is absorbed as sn-2 monoacylglycerol from human milk by breast-fed infants. Lipids 29: 541–545. 7990660
39. Carnielli VP, Luijendijk IH, van Beek RH, Boerma GJ, Degenhart HJ, et al. (1995) Effect of dietary triacylglycerol fatty acid positional distribution on plasma lipid classes and their fatty acid composition in preterm infants. Am J Clin Nutr 62: 776–781. 7572708
40. Turunen S, Crailsheim K (1996) Lipid and sugar absorption. In: Lehane MJ, Billingsley PF, editors. Biology of Insect Midgut. London: Chapman & Hall. pp. 293–320.
41. Lemaitre B, Miguel-Aliaga I (2013) The digestive tract of Drosophila melanogaster. Annu Rev Genet 47: 377–404. doi: 10.1146/annurev-genet-111212-133343 24016187
42. Anton M, Martinet V, Dalgalarrondo M, Beaumal V, David-Briand E, et al. (2003) Chemical and structural characterisation of low-density lipoproteins purified from hen egg yolk. Food Chemistry 83: 175–183.
43. Carvalho M, Sampaio JL, Palm W, Brankatschk M, Eaton S, et al. (2012) Effects of diet and development on the Drosophila lipidome. Mol Syst Biol 8: 600. doi: 10.1038/msb.2012.29 22864382
44. Musselman LP, Fink JL, Ramachandran PV, Patterson BW, Okunade AL, et al. (2013) Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. J Biol Chem 288: 8028–8042. doi: 10.1074/jbc.M112.371047 23355467
45. Guillou H, Zadravec D, Martin PG, Jacobsson A (2010) The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lipid Res 49: 186–199. doi: 10.1016/j.plipres.2009.12.002 20018209
46. Kim JK, Gavrilova O, Chen Y, Reitman ML, Shulman GI (2000) Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem 275: 8456–8460. 10722680
47. Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, et al. (2000) Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 105: 271–278. 10675352
48. Lan H, Rabaglia ME, Stoehr JP, Nadler ST, Schueler KL, et al. (2003) Gene expression profiles of nondiabetic and diabetic obese mice suggest a role of hepatic lipogenic capacity in diabetes susceptibility. Diabetes 52: 688–700. 12606510
49. Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K (2004) Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A 101: 7281–7286. 15118080
50. Havula E, Teesalu M, Hyotylainen T, Seppala H, Hasygar K, et al. (2013) Mondo/ChREBP-Mlx-regulated transcriptional network is essential for dietary sugar tolerance in Drosophila. PLoS Genet 9: e1003438. doi: 10.1371/journal.pgen.1003438 23593032
51. Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, et al. (2011) A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech 4: 842–849. doi: 10.1242/dmm.007948 21719444
52. Furusyo N, Hayashi J (2013) Glycated albumin and diabetes mellitus. Biochim Biophys Acta 1830: 5509–5514. doi: 10.1016/j.bbagen.2013.05.010 23673238
53. Thornalley PJ (1988) Modification of the glyoxalase system in human red blood cells by glucose in vitro. Biochem J 254: 751–755. 3196289
54. Brouwers O, Niessen PM, Miyata T, Ostergaard JA, Flyvbjerg A, et al. (2013) Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes. Diabetologia 57: 224–235. doi: 10.1007/s00125-013-3088-5 24162587
55. Schlotterer A, Kukudov G, Bozorgmehr F, Hutter H, Du X, et al. (2009) C. elegans as model for the study of high glucose- mediated life span reduction. Diabetes 58: 2450–2456. doi: 10.2337/db09-0567 19675139
56. Phillips SA, Mirrlees D, Thornalley PJ (1993) Modification of the glyoxalase system in streptozotocin-induced diabetic rats. Effect of the aldose reductase inhibitor Statil. Biochem Pharmacol 46: 805–811. 8373434
57. Beisswenger PJ, Howell SK, Touchette AD, Lal S, Szwergold BS (1999) Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes 48: 198–202. 9892243
58. Karachalias N, Babaei-Jadidi R, Rabbani N, Thornalley PJ (2010) Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia 53: 1506–1516. doi: 10.1007/s00125-010-1722-z 20369223
59. Kesavan SK, Bhat S, Golegaonkar SB, Jagadeeshaprasad MG, Deshmukh AB, et al. (2013) Proteome wide reduction in AGE modification in streptozotocin induced diabetic mice by hydralazine mediated transglycation. Sci Rep 3: 2941. doi: 10.1038/srep02941 24126953
60. Cantero AV, Portero-Otin M, Ayala V, Auge N, Sanson M, et al. (2007) Methylglyoxal induces advanced glycation end product (AGEs) formation and dysfunction of PDGF receptor-beta: implications for diabetic atherosclerosis. Faseb J 21: 3096–3106. 17504976
61. Brouwers O, Niessen PM, Haenen G, Miyata T, Brownlee M, et al. (2010) Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress. Diabetologia 53: 989–1000. doi: 10.1007/s00125-010-1677-0 20186387
62. Morgan PE, Sheahan PJ, Pattison DI, Davies MJ (2013) Methylglyoxal-induced modification of arginine residues decreases the activity of NADPH-generating enzymes. Free Radic Biol Med 61C: 229–242.
63. Britton JS, Edgar BA (1998) Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 125: 2149–2158. 9570778
64. Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E (2000) Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 14: 2689–2694. 11069885
65. Parks AL, Cook KR, Belvin M, Dompe NA, Fawcett R, et al. (2004) Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36: 288–292. 14981519
66. Venken KJ, He Y, Hoskins RA, Bellen HJ (2006) P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314: 1747–1751. 17138868
67. Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24: 251–254. 11311363
68. Portier K, Guichardant M, Debouzy JC, Crouzier D, Geraud I, et al. (2007) In vitro effects of oxygen on physico-chemical properties of horse erythrocyte membrane. Environ Toxicol Pharmacol 23: 340–346. doi: 10.1016/j.etap.2006.12.002 21783778
69. R_Core_Team (2013) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. doi: 10.1007/s12070-013-0687-x 25621273
70. Tukey JW (1949) Comparing individual means in the analysis of variance. Biometrics 5: 99–114. 18151955
71. Gunstone FD, Harwood JL, Dijkstra AJ (2007) The Lipid Handbook (3rd Edition): CRC Press, Boca Raton</References> doi: 10.1093/jxb/erm028 25506957
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 2
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genomic Selection and Association Mapping in Rice (): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines
- Discovery of Transcription Factors and Regulatory Regions Driving Tumor Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling
- Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene Prioritization and Construction of Informative Gene-Based Networks
- Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates