HYPER RECOMBINATION1 of the THO/TREX Complex Plays a Role in Controlling Transcription of the Gene in Arabidopsis
The transcription and export of RNA is a dynamic and highly coordinated process. mRNA species that are selectively mediated by the THO/TRanscription EXport (THO/TREX) complex for their transcription and export remain to be identified. As well, the specific roles of complex components in transcription-coupled export are unclear. We reveal a role for HYPER RECOMBINATION1 (HPR1) [the yeast HYPER RECOMBINATION1 (Hpr1) homolog] in REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) transcription elongation but not activation or export, which agrees with the role of yeast Hpr1 in transcription elongation. Defects in the THO/TREX component TEX1 but not the RNA-export TREX-2 component SAC3B also reduced the native RTE1 level. Our data suggest a specific role of the THO/TREX component HPR1 in RTE1 expression. Whether TEX1 is involved in RTE1 transcription or stability remains to be determined. The yeast Sub2 protein is an RNA helicase involved in unwinding the inhibitory structure in the nascent RNA, and SUB2 overexpression suppresses yeast Δhpr1 defects; HPR1 could be involved in expression of selected genes with higher-order structure, where RNA polymerase movement could pause. Studies of the gene structure and transcription activity could shed light on roles of these components in gene expression regulation at the transcription-export level.
Vyšlo v časopise:
HYPER RECOMBINATION1 of the THO/TREX Complex Plays a Role in Controlling Transcription of the Gene in Arabidopsis. PLoS Genet 11(2): e32767. doi:10.1371/journal.pgen.1004956
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004956
Souhrn
The transcription and export of RNA is a dynamic and highly coordinated process. mRNA species that are selectively mediated by the THO/TRanscription EXport (THO/TREX) complex for their transcription and export remain to be identified. As well, the specific roles of complex components in transcription-coupled export are unclear. We reveal a role for HYPER RECOMBINATION1 (HPR1) [the yeast HYPER RECOMBINATION1 (Hpr1) homolog] in REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) transcription elongation but not activation or export, which agrees with the role of yeast Hpr1 in transcription elongation. Defects in the THO/TREX component TEX1 but not the RNA-export TREX-2 component SAC3B also reduced the native RTE1 level. Our data suggest a specific role of the THO/TREX component HPR1 in RTE1 expression. Whether TEX1 is involved in RTE1 transcription or stability remains to be determined. The yeast Sub2 protein is an RNA helicase involved in unwinding the inhibitory structure in the nascent RNA, and SUB2 overexpression suppresses yeast Δhpr1 defects; HPR1 could be involved in expression of selected genes with higher-order structure, where RNA polymerase movement could pause. Studies of the gene structure and transcription activity could shed light on roles of these components in gene expression regulation at the transcription-export level.
Zdroje
1. Wang W, Hall AE, O’Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci U S A 100: 352–357. doi: 10.1073/pnas.0237085100 12509505
2. Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261–271. doi: 10.1016/S0092-8674(00)81425-7 9695954
3. Wang W, Esch JJ, Shiu S-H, Agula H, Binder BM, et al. (2006) Identification of Important Regions for Ethylene Binding and Signaling in the Transmembrane Domain of the ETR1 Ethylene Receptor of Arabidopsis. Plant Cell 18: 3429–3442. doi: 10.1105/tpc.106.044537 17189345
4. Gao Z, Wen C-K, Binder BM, Chen Y-F, Chang J, et al. (2008) Heteromeric Interactions among Ethylene Receptors Mediate Signaling in Arabidopsis. J Biol Chem 283: 23801–23810. doi: 10.1074/jbc.M800641200 18577522
5. Chen Y-F, Gao Z, Kerris RJ III, Wang W, Binder BM, et al. (2010) Ethylene Receptors Function as Components of High-Molecular-Mass Protein Complexes in Arabidopsis. PLoS ONE 5: e8640. doi: 10.1371/journal.pone.0008640 20062808
6. Liu Q, Xu C, Wen C-K (2010) Genetic and transformation studies reveal negative regulation of ERS1 ethylene receptor signaling in Arabidopsis. BMC Plant Biol 10: 60. doi: 10.1186/1471-2229-10-60 20374664
7. Liu Q, WenC-K (2012) Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes. Plant Physiol 158: 1193–1207. doi: 10.1104/pp.111.187757 22227969
8. Resnick JS, Wen C-K, Shockey JA, Chang C (2006) From The Cover: REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA 103: 7917–7922. doi: 10.1073/pnas.0602239103 16682642
9. Dong C-H, Rivarola M, Resnick JS, Maggin BD, Chang C (2008) Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. The Plant Journal 53: 275–286. doi: 10.1111/j.1365-313X.2007.03339.x 17999643
10. Zhou X, Liu Q, Xie F, Wen C-K (2007) RTE1 Is a Golgi-Associated and ETR1-Dependent Negative Regulator of Ethylene Responses. Plant Physiol 145: 75–86. doi: 10.1104/pp.107.104299 17644624
11. Resnick JS, Rivarola M, Chang C (2008) Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis. The Plant Journal 56: 423–431. doi: 10.1111/j.1365-313X.2008.03615.x 18643990
12. Dong C-H, Jang M, Scharein B, Malach A, Rivarola M, et al. (2010) Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1. J Biol Chem 285: 40706–40713. doi: 10.1074/jbc.M110.146605 20952388
13. Zhang W, Zhou X, Wen C-K (2012) Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development. Journal of Experimental Botany 63: 4151–4164. doi: 10.1093/jxb/ers098 22451723
14. Barry CS, Giovannoni JJ (2006) From The Cover: Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci USA 103: 7923–7928. doi: 10.1073/pnas.0602319103 16682641
15. Jauvion V, Elmayan T, Vaucheret H (2010) The Conserved RNA Trafficking Proteins HPR1 and TEX1 Are Involved in the Production of Endogenous and Exogenous Small Interfering RNA in Arabidopsis. The Plant Cell 22: 2697–2709. doi: 10.1105/tpc.110.076638 20798330
16. Lu Q, Tang X, Tian G, Wang F, Liu K, et al. (2010) Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. The Plant Journal 61: 259–270. doi: 10.1111/j.1365-313X.2009.04048.x 19843313
17. Parry G, Ward S, Cernac A, Dharmasiri S, Estelle M (2006) The Arabidopsis SUPPRESSOR OF AUXIN RESISTANCE Proteins Are Nucleoporins with an Important Role in Hormone Signaling and Development. The Plant Cell 18: 1590–1603. doi: 10.1105/tpc.106.041566 16751346
18. Germain H, Qu N, Cheng YT, Lee E, Huang Y, et al. (2010) MOS11: A New Component in the mRNA Export Pathway. PLoS Genet 6: e1001250. doi: 10.1371/journal.pgen.1001250 21203492
19. Gong Z, Dong C-H, Lee H, Zhu J, Xiong L, et al. (2005) A DEAD Box RNA Helicase Is Essential for mRNA Export and Important for Development and Stress Responses in Arabidopsis. The Plant Cell 17: 256–267. doi: 10.1105/tpc.104.027557 15598798
20. Chávez S, Aguilera A (1997) The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes and Development 11: 3459–3470. doi: 10.1101/gad.11.24.3459 9407037
21. Prado F, Piruat JI, Aguilera A (1997) Recombination between DNA repeats in yeast hpr1Δ cells is linked to transcription elongation. The EMBO journal 16: 2826–2835. doi: 10.1093/emboj/16.10.2826 9184227
22. Fan H-Y, Cheng KK, Klein HL (1996) Mutations in the RNA Polymerase II Transcription Machinery Suppress the Hyperrecombination Mutant hpr1 Δ of Saccharomyces cerevisiae. Genetics 142: 749–759. 8849885
23. Merker RJ, Klein HL (2002) Role of Transcription in Plasmid Maintenance in the hpr1Δ Mutant of Saccharomyces cerevisiae. Molecular and Cellular Biology 22: 8763–8773. doi: 10.1128/MCB.22.24.8763-8773.2002 12446793
24. Yelina NE, Smith LM, Jones AME, Patel K, Kelly KA, et al. (2010) Putative Arabidopsis THO/TREX mRNA export complex is involved in transgene and endogenous siRNA biosynthesis. Proc Natl Acad Sci USA 107: 13948–13953. doi: 10.1073/pnas.0911341107 20634427
25. Furumizu C, Tsukaya H, Komeda Y (2010) Characterization of EMU, the Arabidopsis homolog of the yeast THO complex member HPR1. RNA 16: 1809–1817. doi: 10.1261/rna.2265710 20668032
26. Pan H, Liu S, Tang D (2012) HPR1, a component of the THO/TREX complex, plays an important role in disease resistance and senescence in Arabidopsis. The Plant Journal 69: 831–843. doi: 10.1111/j.1365-313X.2011.04835.x 22035198
27. Kohler A, Hurt E (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8: 761–773. doi: 10.1038/nrm2255 17786152
28. Straszer K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, et al. (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417: 304–308. doi: 10.1038/nature746
29. Cheng H, Dufu K, Lee C-S, Hsu JL, Dias A, et al. Human mRNA Export Machinery Recruited to the 5′ End of mRNA. Cell 127: 1389–1400. doi: 10.1016/j.cell.2006.10.044 17190602
30. Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, et al. (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89: 1133–1144. doi: 10.1016/S0092-8674(00)80300-1 9215635
31. Solano R, Stepanova A, Chao Q, Ecker J (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12: 3703–3714. doi: 10.1101/gad.12.23.3703 9851977
32. Qiu L, Xie F, Yu J, Wen C-K (2012) Arabidopsis RTE1 Is Essential to Ethylene Receptor ETR1 Amino-Terminal Signaling Independent of CTR1. Plant Physiology 159: 1263–1276. doi: 10.1104/pp.112.193979 22566492
33. Xie F, Liu Q, Wen C-K (2006) Receptor Signal Output Mediated by the ETR1 N Terminus Is Primarily Subfamily I Receptor Dependent. Plant Physiol 142: 492–508. doi: 10.1104/pp.106.082628 16891553
34. Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, et al. (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115: 679–689. doi: 10.1016/S0092-8674(03)00968-1 14675533
35. Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115: 667–677. doi: 10.1016/S0092-8674(03)00969-3 14675532
36. Rivarola M, McClellan CA, Resnick JS, Chang C (2009) ETR1-Specific Mutations Distinguish ETR1 from Other Arabidopsis Ethylene Receptors as Revealed by Genetic Interaction with RTE1. Plant Physiol 150: 547–551. doi: 10.1104/pp.109.138461 19369589
37. Kieber J, Rothenberg M, Roman G, Feldmann K, Ecker J (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427–441. doi: 10.1016/0092-8674(93)90119-B 8431946
38. Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33: 221–233. doi: 10.1046/j.1365-313X.2003.01620.x 12535337
39. Ju C, Chang C (2012) Advances in ethylene signalling: protein complexes at the endoplasmic reticulum membrane. AoB Plants 2012.
40. Xu S-L, Rahman A, Baskin TI, Kieber JJ (2008) Two Leucine-Rich Repeat Receptor Kinases Mediate Signaling, Linking Cell Wall Biosynthesis and ACC Synthase in Arabidopsis. Plant Cell 20: 3065–3079. doi: 10.1105/tpc.108.063354 19017745
41. Xu C, Gao X, Sun X, Wen C-K (2012) The Basal Level Ethylene Response is Important to the Wall and Endomembrane Structure in the Hypocotyl Cells of Etiolated Arabidopsis Seedlings. Journal of Integrative Plant Biology 54: 434–455. doi: 10.1111/j.1744-7909.2012.01130.x 22591458
42. Siev M, Weinberg R, Penman S (1969) THE SELECTIVE INTERRUPTION OF NUCLEOLAR RNA SYNTHESIS IN HELA CELLS BY CORDYCEPIN. The Journal of Cell Biology 41: 510–520. doi: 10.1083/jcb.41.2.510 5783871
43. Holtorf H, Kunz HS Christian, Waldvogel R, Meins F (1999) Stochastic and Nonstochastic Post-Transcriptional Silencing of Chitinase and β-1,3-Glucanase Genes Involves Increased RNA Turnover—Possible Role for Ribosome-Independent RNA Degradation. The Plant Cell 11: 471–483. doi: 10.1105/tpc.11.3.471 10072405
44. Tilghman SM, Hanson RW, Reshef L, Hopgood MF, Ballard FJ (1974) Rapid Loss of Translatable Messenger RNA of Phosphoenolpyruvate Carboxykinase During Glucose Repression in Liver. Proc Natl Acad Sci USA 71: 1304–1308. doi: 10.1073/pnas.71.4.1304 4364533
45. Souret FF, Kastenmayer JP, Green PJ (2004) AtXRN4 Degrades mRNA in Arabidopsis and Its Substrates Include Selected miRNA Targets. Molecular Cell 15: 173–183. doi: 10.1016/j.molcel.2004.06.006 15260969
46. Gutiérrez RA, Ewing RM, Cherry JM, and Green PJ (2002) Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis: Rapid decay is associated with a group of touch- and specific clock-controlled genes Proc Natl Acad Sci USA 99: 11513–11518.
47. Masuda S, Das R, Cheng H, Hurt E, Dorman N, et al. (2005) Recruitment of the human TREX complex to mRNA during splicing. Genes & Development 19: 1512–1517. doi: 10.1101/gad.1302205
48. Reed R (2003) Coupling transcription, splicing and mRNA export. Current Opinion in Cell Biology 15: 326–331. doi: 10.1016/S0955-0674(03)00048-6 12787775
49. Dias AP, Dufu K, Lei H, Reed R (2010) A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat Commun 1: 97. doi: 10.1038/ncomms1103 20981025
50. Fang Y, Hearn S, Spector DL (2004) Tissue-specific Expression and Dynamic Organization of SR Splicing Factors in Arabidopsis. Molecular Biology of the Cell 15: 2664–2673. doi: 10.1091/mbc.E04-02-0100 15034145
51. Grunwald D, Singer RH, Rout M (2011) Nuclear export dynamics of RNA-protein complexes. Nature 475: 333–341. doi: 10.1038/nature10318 21776079
52. Daxinger L, Hunter B, Sheikh M, Jauvion V, Gasciolli V, et al. (2008) Unexpected silencing effects from T-DNA tags in Arabidopsis. Trends in Plant Science 13: 4–6. doi: 10.1016/j.tplants.2007.10.007 18178509
53. Matzke M, Matzke AJM (1993) Genomic Imprinting in Plants: Parental Effects and Trans-Inactivation Phenomena. Annual Review of Plant Physiology and Plant Molecular Biology 44: 53–76. doi: 10.1146/annurev.pp.44.060193.000413
54. Weinhold A, Kallenbach M, Baldwin IT (2013) Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biology 13: 99. doi: 10.1186/1471-2229-13-99 23837904
55. Xu A, Zhang W, Wen C-K (2014) ENHANCING CTR1–10 ETHYLENE RESPONSE2 is a novel allele involved in CONSTITUTIVE TRIPLE-RESPONSE1-mediated ethylene receptor signaling in Arabidopsis. BMC Plant Biology 14: 48. doi: 10.1186/1471-2229-14-48 24529183
56. Fan H-Y, Merker RJ, Klein HL (2001) High-Copy-Number Expression of Sub2p, a Member of the RNA Helicase Superfamily, Suppresses hpr1-Mediated Genomic Instability. Molecular and Cellular Biology 21: 5459–5470. doi: 10.1128/MCB.21.16.5459-5470.2001 11463828
57. Hieronymus H, Silver PA (2003) Genome-wide analysis of RNA-protein interactions illustrates specificity of the mRNA export machinery. Nat Genet 33: 155–161. doi: 10.1038/ng1080 12524544
58. Rehwinkel J, Herold A, Gari K, Kocher T, Rode M, et al. (2004) Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nat Struct Mol Biol 11: 558–566. doi: 10.1038/nsmb759 15133499
59. Chang J, Clay JM, Chang C (2014) Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis. The Plant Journal 77: 558–567. doi: 10.1111/tpj.12401 24635651
60. Zhang W, Wen C-K (2010) Preparation of ethylene gas and comparison of ethylene responses induced by ethylene, ACC, and ethephon. Plant Physiol Biochem 48: 45–53. doi: 10.1016/j.plaphy.2009.10.002 19836254
61. Folta KM, Kaufman LS (2006) Isolation of Arabidopsis nuclei and measurement of gene transcription rates using nuclear run-on assays. Nat Protocols 1: 3094–3100. doi: 10.1038/nprot.2006.471
62. Clough SJ, Bent AF (1998) Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal 16: 735–743. doi: 10.1046/j.1365-313x.1998.00343.x 10069079
63. Fang Y, Spector DL (2010) Live Cell Imaging of Plants. Cold Spring Harbor Protocols 2010: pdb.top68.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 2
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genomic Selection and Association Mapping in Rice (): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines
- Discovery of Transcription Factors and Regulatory Regions Driving Tumor Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling
- Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene Prioritization and Construction of Informative Gene-Based Networks
- Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates