The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation
Muscle formation and homeostasis critically depend on fusion between myoblasts to create and maintain multinucleated muscle fibers. Despite the importance of this process, the mechanisms regulating myoblast fusion are not fully understood. Previous studies have shown that actin polymerization factor Arp2/3 plays a critical role during myoblast fusion. However, whether other actin regulators also play a role during fusion, and how they coordinate with Arp2/3 in controlling actin dynamics remain unclear. Taking advantage of the model organism, Drosophila melanogaster, which shares the conserved muscle fiber with mammals, we identify the formin Diaphanous (Dia), which polymerizes linear actin filaments, as essential for myoblast fusion. We show that Dia is present at the fusion site, and with a new dominant negative Dia allele, we demonstrate that Dia functions after myoblast recognition and adhesion, but upstream of Arp2/3. Moreover, using dia loss and gain of function experiments, we show that Dia regulates myoblast fusion by regulating actin dynamics and by localizing the Arp2/3 regulators, SCAR and WASp, to the fusion site. Our study thus identifies new regulatory factors during muscle formation. It also suggests mechanisms by which Dia and Arp2/3 activities are coordinated to regulate actin dynamics in vivo during development and homeostasis.
Vyšlo v časopise:
The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation. PLoS Genet 11(8): e32767. doi:10.1371/journal.pgen.1005381
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005381
Souhrn
Muscle formation and homeostasis critically depend on fusion between myoblasts to create and maintain multinucleated muscle fibers. Despite the importance of this process, the mechanisms regulating myoblast fusion are not fully understood. Previous studies have shown that actin polymerization factor Arp2/3 plays a critical role during myoblast fusion. However, whether other actin regulators also play a role during fusion, and how they coordinate with Arp2/3 in controlling actin dynamics remain unclear. Taking advantage of the model organism, Drosophila melanogaster, which shares the conserved muscle fiber with mammals, we identify the formin Diaphanous (Dia), which polymerizes linear actin filaments, as essential for myoblast fusion. We show that Dia is present at the fusion site, and with a new dominant negative Dia allele, we demonstrate that Dia functions after myoblast recognition and adhesion, but upstream of Arp2/3. Moreover, using dia loss and gain of function experiments, we show that Dia regulates myoblast fusion by regulating actin dynamics and by localizing the Arp2/3 regulators, SCAR and WASp, to the fusion site. Our study thus identifies new regulatory factors during muscle formation. It also suggests mechanisms by which Dia and Arp2/3 activities are coordinated to regulate actin dynamics in vivo during development and homeostasis.
Zdroje
1. Revenu C, Athman R, Robine S, Louvard D (2004) The co-workers of actin filaments: from cell structures to signals. Nat Rev Mol Cell Biol 5: 635–646. 15366707
2. Shemer G, Podbilewicz B (2000) Fusomorphogenesis: cell fusion in organ formation. Dev Dyn 218: 30–51. 10822258
3. Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N, et al. (2013) Genetic basis of cell-cell fusion mechanisms. Trends Genet 29: 427–437. doi: 10.1016/j.tig.2013.01.011 23453622
4. Bate M (1990) The embryonic development of larval muscles in Drosophila. Development 110: 791–804. 2100994
5. Dohrmann C, Azpiazu N, Frasch M (1990) A new Drosophila homeo box gene is expressed in mesodermal precursor cells of distinct muscles during embryogenesis. Genes Dev 4: 2098–2111. 1980118
6. Beckett K, Baylies MK (2006) The development of the Drosophila larval body wall muscles. Int Rev Neurobiol 75: 55–70. 17137923
7. de Joussineau C, Bataille L, Jagla T, Jagla K (2012) Diversification of muscle types in Drosophila: upstream and downstream of identity genes. Curr Top Dev Biol 98: 277–301. doi: 10.1016/B978-0-12-386499-4.00011-2 22305167
8. Rochlin K, Yu S, Roy S, Baylies MK (2010) Myoblast fusion: when it takes more to make one. Dev Biol 341: 66–83. doi: 10.1016/j.ydbio.2009.10.024 19932206
9. Simionescu A, Pavlath GK (2011) Molecular mechanisms of myoblast fusion across species. Adv Exp Med Biol 713: 113–135. doi: 10.1007/978-94-007-0763-4_8 21432017
10. Abmayr SM, Pavlath GK (2012) Myoblast fusion: lessons from flies and mice. Development 139: 641–656. doi: 10.1242/dev.068353 22274696
11. Baylies MK, Bate M, Ruiz Gomez M (1998) Myogenesis: a view from Drosophila. Cell 93: 921–927. 9635422
12. Tixier V, Bataille L, Jagla K (2010) Diversification of muscle types: recent insights from Drosophila. Exp Cell Res 316: 3019–3027. doi: 10.1016/j.yexcr.2010.07.013 20673829
13. Bour BA, Chakravarti M, West JM, Abmayr SM (2000) Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev 14: 1498–1511. 10859168
14. Ruiz-Gomez M, Coutts N, Price A, Taylor MV, Bate M (2000) Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 102: 189–198. 10943839
15. Artero RD, Castanon I, Baylies MK (2001) The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling. Development 128: 4251–4264. 11684661
16. Strunkelnberg M, Bonengel B, Moda LM, Hertenstein A, de Couet HG, et al. (2001) rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development 128: 4229–4239. 11684659
17. Berger S, Schafer G, Kesper DA, Holz A, Eriksson T, et al. (2008) WASP and SCAR have distinct roles in activating the Arp2/3 complex during myoblast fusion. J Cell Sci 121: 1303–1313. doi: 10.1242/jcs.022269 18388318
18. Kesper DA, Stute C, Buttgereit D, Kreiskother N, Vishnu S, et al. (2007) Myoblast fusion in Drosophila melanogaster is mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS). Dev Dyn 236: 404–415. 17146786
19. Richardson BE, Beckett K, Nowak SJ, Baylies MK (2007) SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Development 134: 4357–4367. 18003739
20. Kim S, Shilagardi K, Zhang S, Hong SN, Sens KL, et al. (2007) A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev Cell 12: 571–586. 17419995
21. Sens KL, Zhang S, Jin P, Duan R, Zhang G, et al. (2010) An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J Cell Biol 191: 1013–1027. doi: 10.1083/jcb.201006006 21098115
22. Haralalka S, Abmayr SM (2010) Myoblast fusion in Drosophila. Exp Cell Res 316: 3007–3013. doi: 10.1016/j.yexcr.2010.05.018 20580706
23. Higgs HN, Blanchoin L, Pollard TD (1999) Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization. Biochemistry 38: 15212–15222. 10563804
24. Machesky LM, Mullins RD, Higgs HN, Kaiser DA, Blanchoin L, et al. (1999) Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc Natl Acad Sci U S A 96: 3739–3744. 10097107
25. Dayel MJ, Mullins RD (2004) Activation of Arp2/3 complex: addition of the first subunit of the new filament by a WASP protein triggers rapid ATP hydrolysis on Arp2. PLoS Biol 2: E91. 15094799
26. Kunda P, Craig G, Dominguez V, Baum B (2003) Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr Biol 13: 1867–1875. 14588242
27. Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418: 790–793. 12181570
28. Haralalka S, Shelton C, Cartwright HN, Katzfey E, Janzen E, et al. (2011) Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competent myoblasts during myoblast fusion in Drosophila. Development 138: 1551–1562. doi: 10.1242/dev.057653 21389053
29. Geisbrecht ER, Haralalka S, Swanson SK, Florens L, Washburn MP, et al. (2008) Drosophila ELMO/CED-12 interacts with Myoblast city to direct myoblast fusion and ommatidial organization. Dev Biol 314: 137–149. doi: 10.1016/j.ydbio.2007.11.022 18163987
30. Jin P, Duan R, Luo F, Zhang G, Hong SN, et al. (2011) Competition between Blown fuse and WASP for WIP binding regulates the dynamics of WASP-dependent actin polymerization in vivo. Dev Cell 20: 623–638. doi: 10.1016/j.devcel.2011.04.007 21571220
31. Gildor B, Massarwa R, Shilo BZ, Schejter ED (2009) The SCAR and WASp nucleation-promoting factors act sequentially to mediate Drosophila myoblast fusion. EMBO Rep 10: 1043–1050. doi: 10.1038/embor.2009.129 19644501
32. Blanchoin L, Amann KJ, Higgs HN, Marchand JB, Kaiser DA, et al. (2000) Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404: 1007–1011. 10801131
33. Pollard TD (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 36: 451–477. 17477841
34. Ryu JR, Echarri A, Li R, Pendergast AM (2009) Regulation of cell-cell adhesion by Abi/Diaphanous complexes. Mol Cell Biol 29: 1735–1748. doi: 10.1128/MCB.01483-08 19158278
35. Beli P, Mascheroni D, Xu D, Innocenti M (2008) WAVE and Arp2/3 jointly inhibit filopodium formation by entering into a complex with mDia2. Nat Cell Biol 10: 849–857. doi: 10.1038/ncb1745 18516090
36. Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11: 237–251. doi: 10.1038/nrm2867 20237478
37. Bogdan S, Schultz J, Grosshans J (2013) Formin' cellular structures: Physiological roles of Diaphanous (Dia) in actin dynamics. Commun Integr Biol 6: e27634. doi: 10.4161/cib.27634 24719676
38. Lizarraga F, Poincloux R, Romao M, Montagnac G, Le Dez G, et al. (2009) Diaphanous-related formins are required for invadopodia formation and invasion of breast tumor cells. Cancer Res 69: 2792–2800. doi: 10.1158/0008-5472.CAN-08-3709 19276357
39. Mersich AT, Miller MR, Chkourko H, Blystone SD (2010) The formin FRL1 (FMNL1) is an essential component of macrophage podosomes. Cytoskeleton (Hoboken) 67: 573–585.
40. Afshar K, Stuart B, Wasserman SA (2000) Functional analysis of the Drosophila diaphanous FH protein in early embryonic development. Development 127: 1887–1897. 10751177
41. Grosshans J, Wenzl C, Herz HM, Bartoszewski S, Schnorrer F, et al. (2005) RhoGEF2 and the formin Dia control the formation of the furrow canal by directed actin assembly during Drosophila cellularisation. Development 132: 1009–1020. 15689371
42. Antunes M, Pereira T, Cordeiro JV, Almeida L, Jacinto A (2013) Coordinated waves of actomyosin flow and apical cell constriction immediately after wounding. J Cell Biol 202: 365–379. doi: 10.1083/jcb.201211039 23878279
43. Abreu-Blanco MT, Verboon JM, Parkhurst SM (2014) Coordination of Rho family GTPase activities to orchestrate cytoskeleton responses during cell wound repair. Curr Biol 24: 144–155. doi: 10.1016/j.cub.2013.11.048 24388847
44. Mulinari S, Barmchi MP, Hacker U (2008) DRhoGEF2 and diaphanous regulate contractile force during segmental groove morphogenesis in the Drosophila embryo. Mol Biol Cell 19: 1883–1892. doi: 10.1091/mbc.E07-12-1230 18287521
45. Homem CC, Peifer M (2009) Exploring the roles of diaphanous and enabled activity in shaping the balance between filopodia and lamellipodia. Mol Biol Cell 20: 5138–5155. doi: 10.1091/mbc.E09-02-0144 19846663
46. Pawson C, Eaton BA, Davis GW (2008) Formin-dependent synaptic growth: evidence that Dlar signals via Diaphanous to modulate synaptic actin and dynamic pioneer microtubules. J Neurosci 28: 11111–11123. doi: 10.1523/JNEUROSCI.0833-08.2008 18971454
47. Manseau L, Calley J, Phan H (1996) Profilin is required for posterior patterning of the Drosophila oocyte. Development 122: 2109–2116. 8681792
48. Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, et al. (1997) p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 16: 3044–3056. 9214622
49. Higgs HN (2005) Formin proteins: a domain-based approach. Trends Biochem Sci 30: 342–353. 15950879
50. Paul AS, Pollard TD (2009) Review of the mechanism of processive actin filament elongation by formins. Cell Motil Cytoskeleton 66: 606–617. doi: 10.1002/cm.20379 19459187
51. Alberts AS (2001) Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J Biol Chem 276: 2824–2830. 11035012
52. Li F, Higgs HN (2005) Dissecting requirements for auto-inhibition of actin nucleation by the formin, mDia1. J Biol Chem 280: 6986–6992. 15591319
53. Millard TH, Martin P (2008) Dynamic analysis of filopodial interactions during the zippering phase of Drosophila dorsal closure. Development 135: 621–626. doi: 10.1242/dev.014001 18184725
54. Bothe I, Deng S, Baylies M (2014) PI(4,5)P2 regulates myoblast fusion through Arp2/3 regulator localization at the fusion site. Development 141: 2289–2301. doi: 10.1242/dev.100743 24821989
55. Rushton E, Drysdale R, Abmayr SM, Michelson AM, Bate M (1995) Mutations in a novel gene, myoblast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development. Development 121: 1979–1988. 7635046
56. Doberstein SK, Fetter RD, Mehta AY, Goodman CS (1997) Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J Cell Biol 136: 1249–1261. 9087441
57. Chen EH, Pryce BA, Tzeng JA, Gonzalez GA, Olson EN (2003) Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6. Cell 114: 751–762. 14505574
58. Castrillon DH, Wasserman SA (1994) Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 120: 3367–3377. 7821209
59. Homem CC, Peifer M (2008) Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis. Development 135: 1005–1018. doi: 10.1242/dev.016337 18256194
60. Dobi KC, Schulman VK, Baylies MK (2015) Specification of the somatic musculature in Drosophila. Wiley Interdiscip Rev Dev Biol.
61. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401–415. 8223268
62. Copeland JW, Copeland SJ, Treisman R (2004) Homo-oligomerization is essential for F-actin assembly by the formin family FH2 domain. J Biol Chem 279: 50250–50256. 15371418
63. Staus DP, Blaker AL, Taylor JM, Mack CP (2007) Diaphanous 1 and 2 regulate smooth muscle cell differentiation by activating the myocardin-related transcription factors. Arterioscler Thromb Vasc Biol 27: 478–486. 17170370
64. Mellor H (2010) The role of formins in filopodia formation. Biochim Biophys Acta 1803: 191–200. doi: 10.1016/j.bbamcr.2008.12.018 19171166
65. Seroude L, Brummel T, Kapahi P, Benzer S (2002) Spatio-temporal analysis of gene expression during aging in Drosophila melanogaster. Aging Cell 1: 47–56. 12882353
66. Rousso T, Shewan AM, Mostov KE, Schejter ED, Shilo BZ (2013) Apical targeting of the formin Diaphanous in Drosophila tubular epithelia. Elife 2: e00666. doi: 10.7554/eLife.00666 23853710
67. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112: 453–465. 12600310
68. Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, et al. (2002) Role of formins in actin assembly: nucleation and barbed-end association. Science 297: 612–615. 12052901
69. Fukumi-Tominaga T, Mori Y, Matsuura A, Kaneko K, Matsui M, et al. (2009) DIP/WISH-deficient mice reveal Dia- and N-WASP-interacting protein as a regulator of cytoskeletal dynamics in embryonic fibroblasts. Genes Cells 14: 1197–1207. doi: 10.1111/j.1365-2443.2009.01345.x 19778379
70. Yan S, Lv Z, Winterhoff M, Wenzl C, Zobel T, et al. (2013) The F-BAR protein Cip4/Toca-1 antagonizes the formin Diaphanous in membrane stabilization and compartmentalization. J Cell Sci 126: 1796–1805. doi: 10.1242/jcs.118422 23424199
71. Ramalingam N, Zhao H, Breitsprecher D, Lappalainen P, Faix J, et al. (2010) Phospholipids regulate localization and activity of mDia1 formin. Eur J Cell Biol 89: 723–732. doi: 10.1016/j.ejcb.2010.06.001 20619927
72. Co C, Wong DT, Gierke S, Chang V, Taunton J (2007) Mechanism of actin network attachment to moving membranes: barbed end capture by N-WASP WH2 domains. Cell 128: 901–913. 17350575
73. Linder S (2009) Invadosomes at a glance. J Cell Sci 122: 3009–3013. doi: 10.1242/jcs.032631 19692587
74. Clark IB, Muha V, Klingseisen A, Leptin M, Muller HA (2011) Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila. Development 138: 2705–2715. doi: 10.1242/dev.060277 21613323
75. Guruharsha KG, Ruiz-Gomez M, Ranganath HA, Siddharthan R, Vijayraghavan K (2009) The complex spatio-temporal regulation of the Drosophila myoblast attractant gene duf/kirre. PLoS One 4: e6960. doi: 10.1371/journal.pone.0006960 19742310
76. Hummel T, Leifker K, Klambt C (2000) The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization. Genes Dev 14: 863–873. 10766742
77. Hakeda-Suzuki S, Ng J, Tzu J, Dietzl G, Sun Y, et al. (2002) Rac function and regulation during Drosophila development. Nature 416: 438–442. 11919634
78. Schafer G, Weber S, Holz A, Bogdan S, Schumacher S, et al. (2007) The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila. Dev Biol 304: 664–674. 17306790
79. Le T, Liang Z, Patel H, Yu MH, Sivasubramaniam G, et al. (2006) A new family of Drosophila balancer chromosomes with a w- dfd-GMR yellow fluorescent protein marker. Genetics 174: 2255–2257. 17057238
80. Ranganayakulu G, Elliott DA, Harvey RP, Olson EN (1998) Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice. Development 125: 3037–3048. 9671578
81. Pinal N, Goberdhan DC, Collinson L, Fujita Y, Cox IM, et al. (2006) Regulated and polarized PtdIns(3,4,5)P3 accumulation is essential for apical membrane morphogenesis in photoreceptor epithelial cells. Curr Biol 16: 140–149. 16431366
82. Shivdasani AA, Ingham PW (2003) Regulation of stem cell maintenance and transit amplifying cell proliferation by tgf-beta signaling in Drosophila spermatogenesis. Curr Biol 13: 2065–2072. 14653996
83. Schulz C, Kiger AA, Tazuke SI, Yamashita YM, Pantalena-Filho LC, et al. (2004) A misexpression screen reveals effects of bag-of-marbles and TGF beta class signaling on the Drosophila male germ-line stem cell lineage. Genetics 167: 707–723. 15238523
84. Campos-Ortega JAaH, V. (1985) The Embryonic development of Drosophila melanogaster. Springer-Verlag, Berlin.
85. Zallen JA, Cohen Y, Hudson AM, Cooley L, Wieschaus E, et al. (2002) SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J Cell Biol 156: 689–701. 11854309
86. Metzger T, Gache V, Xu M, Cadot B, Folker ES, et al. (2012) MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484: 120–124. doi: 10.1038/nature10914 22425998
87. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675. 22930834
88. Wen J, Duan H, Bejarano F, Okamura K, Fabian L, et al. (2015) Adaptive regulation of testis gene expression and control of male fertility by the Drosophila harpin RNA pathway. Mol Cell 57: 165–178. doi: 10.1016/j.molcel.2014.11.025 25544562
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 8
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Exon 7 Contributes to the Stable Localization of Xist RNA on the Inactive X-Chromosome
- YAP1 Exerts Its Transcriptional Control via TEAD-Mediated Activation of Enhancers
- SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function
- Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation