Variability of Gene Expression Identifies Transcriptional Regulators of Early Human Embryonic Development
In order to function properly, cells express specific sets of genes that are regulated via complex transcriptional programs. During early stages of development, when an embryo consists of only a handful of cells, it is vital that these cells work together so that the embryo can develop into a healthy baby. Single cell studies allow us to understand how each cell contributes to ensuring proper regulation of the embryo, as well as identify the critical genes whose expression is important for development. While we understand that regulation of a gene occurs through the timing of when it is expressed and also the quantity of its expression, more recently we have come to recognize that the variability of a gene’s expression across single cells may also contribute to the viability of the organism. In this study, we analyzed the gene expression variability of human embryos at different developmental stages. We discovered distinctive patterns of variability across cells in the embryo; some genes had extremely stable expression, and others were variable but with increased homogeneity in expression at a particular developmental stage. We validated one of these stage-specific markers and found that it played a role in the maintenance of pluripotency of human pluripotent stem cells. Overall, these results can help unlock additional clues into understanding how embryonic development is regulated in humans.
Vyšlo v časopise:
Variability of Gene Expression Identifies Transcriptional Regulators of Early Human Embryonic Development. PLoS Genet 11(8): e32767. doi:10.1371/journal.pgen.1005428
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005428
Souhrn
In order to function properly, cells express specific sets of genes that are regulated via complex transcriptional programs. During early stages of development, when an embryo consists of only a handful of cells, it is vital that these cells work together so that the embryo can develop into a healthy baby. Single cell studies allow us to understand how each cell contributes to ensuring proper regulation of the embryo, as well as identify the critical genes whose expression is important for development. While we understand that regulation of a gene occurs through the timing of when it is expressed and also the quantity of its expression, more recently we have come to recognize that the variability of a gene’s expression across single cells may also contribute to the viability of the organism. In this study, we analyzed the gene expression variability of human embryos at different developmental stages. We discovered distinctive patterns of variability across cells in the embryo; some genes had extremely stable expression, and others were variable but with increased homogeneity in expression at a particular developmental stage. We validated one of these stage-specific markers and found that it played a role in the maintenance of pluripotency of human pluripotent stem cells. Overall, these results can help unlock additional clues into understanding how embryonic development is regulated in humans.
Zdroje
1. Tischler J, Surani MA. Investigating transcriptional states at single-cell-resolution. Current opinion in biotechnology. 2013;24(1):69–78. doi: 10.1016/j.copbio.2012.09.013 23084076.
2. Nakamura N, Yamazawa T, Okubo Y, Iino M. Temporal switching and cell-to-cell variability in Ca2+ release activity in mammalian cells. Molecular systems biology. 2009;5:247. doi: 10.1038/msb.2009.6 19293827; PubMed Central PMCID: PMC2671922.
3. Bengtsson M, Stahlberg A, Rorsman P, Kubista M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome research. 2005;15(10):1388–92. doi: 10.1101/gr.3820805 16204192; PubMed Central PMCID: PMC1240081.
4. Mar JC, Rubio R, Quackenbush J. Inferring steady state single-cell gene expression distributions from analysis of mesoscopic samples. Genome biology. 2006;7(12):R119. doi: 10.1186/gb-2006-7-12-r119 17169148; PubMed Central PMCID: PMC1794432.
5. Levsky JM, Singer RH. Gene expression and the myth of the average cell. Trends in cell biology. 2003;13(1):4–6. 12480334.
6. Teles J, Pina C, Eden P, Ohlsson M, Enver T, Peterson C. Transcriptional regulation of lineage commitment—a stochastic model of cell fate decisions. PLoS computational biology. 2013;9(8):e1003197. doi: 10.1371/journal.pcbi.1003197 23990771; PubMed Central PMCID: PMC3749951.
7. Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Developmental cell. 2010;18(4):675–85. 20412781.
8. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature. 2008;453(7194):544–7. doi: 10.1038/nature06965 18497826.
9. Palani S, Sarkar CA. Transient noise amplification and gene expression synchronization in a bistable mammalian cell-fate switch. Cell reports. 2012;1(3):215–24. 22832195.
10. Huh D, Paulsson J. Non-genetic heterogeneity from stochastic partitioning at cell division. Nature genetics. 2011;43(2):95–100. doi: 10.1038/ng.729 21186354; PubMed Central PMCID: PMC3208402.
11. Ross IL, Browne CM, Hume DA. Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunology and cell biology. 1994;72(2):177–85. doi: 10.1038/icb.1994.26 8200693.
12. McAdams HH, Arkin A. Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(3):814–9. 9023339; PubMed Central PMCID: PMC19596.
13. Mar JC, Matigian NA, Mackay-Sim A, Mellick GD, Sue CM, Silburn PA, et al. Variance of gene expression identifies altered network constraints in neurological disease. PLoS genetics. 2011;7(8):e1002207. doi: 10.1371/journal.pgen.1002207 21852951; PubMed Central PMCID: PMC3154954.
14. Mason EA, Mar JC, Laslett AL, Pera MF, Quackenbush J, Wolvetang E, et al. Gene expression variability as a unifying element of the pluripotency network. Stem cell reports. 2014;3(2):365–77. 25254348; PubMed Central PMCID: PMC4175554.
15. Chalancon G, Ravarani CN, Balaji S, Martinez-Arias A, Aravind L, Jothi R, et al. Interplay between gene expression noise and regulatory network architecture. Trends in genetics: TIG. 2012;28(5):221–32. 22365642; PubMed Central PMCID: PMC3340541.
16. Losick R, Desplan C. Stochasticity and cell fate. Science. 2008;320(5872):65–8. doi: 10.1126/science.1147888 18388284; PubMed Central PMCID: PMC2605794.
17. Raser JM, O'Shea EK. Noise in gene expression: origins, consequences, and control. Science. 2005;309(5743):2010–3. doi: 10.1126/science.1105891 16179466; PubMed Central PMCID: PMC1360161.
18. Alemu EY, Carl JW Jr., Corrada Bravo H, Hannenhalli S. Determinants of expression variability. Nucleic acids research. 2014;42(6):3503–14. doi: 10.1093/nar/gkt1364 24435799; PubMed Central PMCID: PMC3973347.
19. Munsky B, Neuert G, van Oudenaarden A. Using gene expression noise to understand gene regulation. Science. 2012;336(6078):183–7. doi: 10.1126/science.1216379 22499939; PubMed Central PMCID: PMC3358231.
20. Eldar A, Elowitz MB. Functional roles for noise in genetic circuits. Nature. 2010;467(7312):167–73. doi: 10.1038/nature09326 20829787; PubMed Central PMCID: PMC4100692.
21. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science. 2002;297(5584):1183–6. doi: 10.1126/science.1070919 12183631.
22. Bajikar SS, Fuchs C, Roller A, Theis FJ, Janes KA. Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(5):E626–35. doi: 10.1073/pnas.1311647111 24449900; PubMed Central PMCID: PMC3918796.
23. Storey JD, Madeoy J, Strout JL, Wurfel M, Ronald J, Akey JM. Gene-expression variation within and among human populations. American journal of human genetics. 2007;80(3):502–9. 17273971; PubMed Central PMCID: PMC1821107.
24. Li J, Liu Y, Kim T, Min R, Zhang Z. Gene expression variability within and between human populations and implications toward disease susceptibility. PLoS computational biology. 2010;6(8). doi: 10.1371/journal.pcbi.1000910 20865155; PubMed Central PMCID: PMC2928754.
25. Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20(9):1131–9. doi: 10.1038/nsmb.2660 23934149.
26. Baczkowski T, Kurzawa R, Glabowski W. Methods of embryo scoring in in vitro fertilization. Reproductive biology. 2004;4(1):5–22. 15094792.
27. Treff NR. Genome-wide analysis of human preimplantation aneuploidy. Seminars in reproductive medicine. 2012;30(4):283–8. doi: 10.1055/s-0032-1313907 22723009.
28. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122(6):947–56. 16153702; PubMed Central PMCID: PMC3006442.
29. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic acids research. 2014;42(Database issue):D1001–6. doi: 10.1093/nar/gkt1229 24316577; PubMed Central PMCID: PMC3965119.
30. Medicine M-NIoG. Online Mendelian Inheritance in Man, OMIM Baltimore, MD: Johns Hopkins University. Available from: http://omim.org.
31. Georgi B, Voight BF, Bucan M. From mouse to human: evolutionary genomics analysis of human orthologs of essential genes. PLoS genetics. 2013;9(5):e1003484. doi: 10.1371/journal.pgen.1003484 23675308; PubMed Central PMCID: PMC3649967.
32. de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, et al. Evidence based selection of housekeeping genes. PLoS One. 2007;2(9):e898. doi: 10.1371/journal.pone.0000898 17878933; PubMed Central PMCID: PMC1976390.
33. Dang VT, Kassahn KS, Marcos AE, Ragan MA. Identification of human haploinsufficient genes and their genomic proximity to segmental duplications. Eur J Hum Genet. 2008;16(11):1350–7. doi: 10.1038/ejhg.2008.111 18523451.
34. Boone PM, Campbell IM, Baggett BC, Soens ZT, Rao MM, Hixson PM, et al. Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles. Genome research. 2013;23(9):1383–94. doi: 10.1101/gr.156075.113 23685542; PubMed Central PMCID: PMC3759716.
35. MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science. 2012;335(6070):823–8. doi: 10.1126/science.1215040 22344438; PubMed Central PMCID: PMC3299548.
36. Levene H. Robust Tests for Equality of Variances. In: Olkin I, editor. Contributions to Probability and Statistics. Palo Alto, CA: Stanford Univ. Press.; 1960.
37. Lin C, Lu W, Zhai L, Bethea T, Berry K, Qu Z, et al. Mesd is a general inhibitor of different Wnt ligands in Wnt/LRP signaling and inhibits PC-3 tumor growth in vivo. FEBS letters. 2011;585(19):3120–5. 21907199; PubMed Central PMCID: PMC3183310.
38. Ueno M, Lee LK, Chhabra A, Kim YJ, Sasidharan R, Van Handel B, et al. c-Met-dependent multipotent labyrinth trophoblast progenitors establish placental exchange interface. Developmental cell. 2013;27(4):373–86. doi: 10.1016/j.devcel.2013.10.019 24286824; PubMed Central PMCID: PMC3950757.
39. Nagao K, Zhu J, Heneghan MB, Hanson JC, Morasso MI, Tessarollo L, et al. Abnormal placental development and early embryonic lethality in EpCAM-null mice. PLoS One. 2009;4(12):e8543. doi: 10.1371/journal.pone.0008543 20046825; PubMed Central PMCID: PMC2796178.
40. Wang X, Phelan SA, Forsman-Semb K, Taylor EF, Petros C, Brown A, et al. Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. The Journal of biological chemistry. 2003;278(27):25179–90. doi: 10.1074/jbc.M302706200 12732627.
41. Manevich Y, Fisher AB. Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free radical biology & medicine. 2005;38(11):1422–32. doi: 10.1016/j.freeradbiomed.2005.02.011 15890616.
42. Hirota Y, Acar N, Tranguch S, Burnum KE, Xie H, Kodama A, et al. Uterine FK506-binding protein 52 (FKBP52)-peroxiredoxin-6 (PRDX6) signaling protects pregnancy from overt oxidative stress. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(35):15577–82. doi: 10.1073/pnas.1009324107 20713718; PubMed Central PMCID: PMC2932576.
43. Raijmakers MT, Steegers EA, Peters WH. Glutathione S-transferases and thiol concentrations in embryonic and early fetal tissues. Human reproduction. 2001;16(11):2445–50. 11679536.
44. Briggs JA, Sun J, Shepherd J, Ovchinnikov DA, Chung TL, Nayler SP, et al. Integration-free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology. Stem Cells. 2013;31(3):467–78. doi: 10.1002/stem.1297 23225669.
45. Kolle G, Ho M, Zhou Q, Chy HS, Krishnan K, Cloonan N, et al. Identification of human embryonic stem cell surface markers by combined membrane-polysome translation state array analysis and immunotranscriptional profiling. Stem Cells. 2009;27(10):2446–56. doi: 10.1002/stem.182 19650036.
46. Vitale AM, Matigian NA, Ravishankar S, Bellette B, Wood SA, Wolvetang EJ, et al. Variability in the generation of induced pluripotent stem cells: importance for disease modeling. Stem Cells Transl Med. 2012;1(9):641–50. doi: 10.5966/sctm.2012-0043 23197870; PubMed Central PMCID: PMC3659735.
47. Huang S. Non-genetic heterogeneity of cells in development: more than just noise. Development. 2009;136(23):3853–62. doi: 10.1242/dev.035139 19906852; PubMed Central PMCID: PMC2778736.
48. Ohnishi Y, Huber W, Tsumura A, Kang M, Xenopoulos P, Kurimoto K, et al. Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nature cell biology. 2014;16(1):27–37. doi: 10.1038/ncb2881 24292013; PubMed Central PMCID: PMC4062977.
49. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(16):6062–7. doi: 10.1073/pnas.0400782101 15075390; PubMed Central PMCID: PMC395923.
50. Morris SA, Teo RT, Li H, Robson P, Glover DM, Zernicka-Goetz M. Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(14):6364–9. doi: 10.1073/pnas.0915063107 20308546; PubMed Central PMCID: PMC2852013.
51. Schultz GA, Heyner S. Gene expression in pre-implantation mammalian embryos. Mutation research. 1992;296(1–2):17–31. 1279404.
52. Vassena R, Boue S, Gonzalez-Roca E, Aran B, Auer H, Veiga A, et al. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development. 2011;138(17):3699–709. doi: 10.1242/dev.064741 21775417; PubMed Central PMCID: PMC4074286.
53. Tonge PD, Corso AJ, Monetti C, Hussein SM, Puri MC, Michael IP, et al. Divergent reprogramming routes lead to alternative stem-cell states. Nature. 2014;516(7530):192–7. doi: 10.1038/nature14047 25503232.
54. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nature reviews Genetics. 2002;3(9):662–73. doi: 10.1038/nrg887 12209141.
55. Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes & development. 2014;28(8):812–28. doi: 10.1101/gad.234294.113 24736841; PubMed Central PMCID: PMC4003274.
56. Davy A, Soriano P. Ephrin signaling in vivo: look both ways. Developmental dynamics: an official publication of the American Association of Anatomists. 2005;232(1):1–10. doi: 10.1002/dvdy.20200 15580616.
57. Kawagishi R, Tahara M, Sawada K, Ikebuchi Y, Morishige K, Sakata M, et al. Rho-kinase is involved in mouse blastocyst cavity formation. Biochemical and biophysical research communications. 2004;319(2):643–8. doi: 10.1016/j.bbrc.2004.05.040 15178454.
58. Laeno AM, Tamashiro DA, Alarcon VB. Rho-associated kinase activity is required for proper morphogenesis of the inner cell mass in the mouse blastocyst. Biology of reproduction. 2013;89(5):122. doi: 10.1095/biolreprod.113.109470 23946538.
59. Treff NR, Su J, Taylor D, Scott RT Jr. Telomere DNA deficiency is associated with development of human embryonic aneuploidy. PLoS genetics. 2011;7(6):e1002161. doi: 10.1371/journal.pgen.1002161 21738493; PubMed Central PMCID: PMC3128107.
60. Liu L, Bailey SM, Okuka M, Munoz P, Li C, Zhou L, et al. Telomere lengthening early in development. Nature cell biology. 2007;9(12):1436–41. doi: 10.1038/ncb1664 17982445.
61. Schaetzlein S, Lucas-Hahn A, Lemme E, Kues WA, Dorsch M, Manns MP, et al. Telomere length is reset during early mammalian embryogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(21):8034–8. doi: 10.1073/pnas.0402400101 15148368; PubMed Central PMCID: PMC419552.
62. Turner S, Wong HP, Rai J, Hartshorne GM. Telomere lengths in human oocytes, cleavage stage embryos and blastocysts. Molecular human reproduction. 2010;16(9):685–94. doi: 10.1093/molehr/gaq048 20573647; PubMed Central PMCID: PMC2930518.
63. Armant DR. Blastocysts don't go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Developmental biology. 2005;280(2):260–80. doi: 10.1016/j.ydbio.2005.02.009 15882572; PubMed Central PMCID: PMC2715296.
64. Kim J, Erikson DW, Burghardt RC, Spencer TE, Wu G, Bayless KJ, et al. Secreted phosphoprotein 1 binds integrins to initiate multiple cell signaling pathways, including FRAP1/mTOR, to support attachment and force-generated migration of trophectoderm cells. Matrix biology: journal of the International Society for Matrix Biology. 2010;29(5):369–82. doi: 10.1016/j.matbio.2010.04.001 20385232.
65. Burghardt RC, Johnson GA, Jaeger LA, Ka H, Garlow JE, Spencer TE, et al. Integrins and extracellular matrix proteins at the maternal-fetal interface in domestic animals. Cells, tissues, organs. 2002;172(3):202–17. 66969. 12476049.
66. Yoon SJ, Koo DB, Park JS, Choi KH, Han YM, Lee KA. Role of cytosolic malate dehydrogenase in oocyte maturation and embryo development. Fertility and sterility. 2006;86(4 Suppl):1129–36. 16962111.
67. Deng Q, Ramskold D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014;343(6167):193–6. doi: 10.1126/science.1245316 24408435.
68. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(43):15545–50. doi: 10.1073/pnas.0506580102 16199517; PubMed Central PMCID: PMC1239896.
69. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell. 2008;2(4):333–44. 18397753; PubMed Central PMCID: PMC2628721.
70. Muller FJ, Laurent LC, Kostka D, Ulitsky I, Williams R, Lu C, et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature. 2008;455(7211):401–5. doi: 10.1038/nature07213 18724358; PubMed Central PMCID: PMC2637443.
71. Lin S, Lin Y, Nery JR, Urich MA, Breschi A, Davis CA, et al. Comparison of the transcriptional landscapes between human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(48):17224–9. doi: 10.1073/pnas.1413624111 25413365; PubMed Central PMCID: PMC4260565.
72. Lee MT, Bonneau AR, Giraldez AJ. Zygotic Genome Activation During the Maternal-to-Zygotic Transition. Annual review of cell and developmental biology. 2014;30:581–613. doi: 10.1146/annurev-cellbio-100913-013027 25150012.
73. Eisenberg E, Levanon EY. Human housekeeping genes, revisited. Trends in genetics: TIG. 2013;29(10):569–74.
74. Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, Jarrells J, et al. Gene expression divergence recapitulates the developmental hourglass model. Nature. 2010;468(7325):811–4. doi: 10.1038/nature09634 21150996.
75. Gerstein MB, Rozowsky J, Yan KK, Wang D, Cheng C, Brown JB, et al. Comparative analysis of the transcriptome across distant species. Nature. 2014;512(7515):445–8. doi: 10.1038/nature13424 25164755; PubMed Central PMCID: PMC4155737.
76. Liu T, Yu L, Ding G, Wang Z, Liu L, Li H, et al. Gene Coexpression and Evolutionary Conservation Analysis of the Human Preimplantation Embryos. BioMed Research International. 2015.
77. Simon A, Laufer N. Assessment and treatment of repeated implantation failure (RIF). J Assist Reprod Genet. 2012;29(11):1227–39. doi: 10.1007/s10815-012-9861-4 22976427; PubMed Central PMCID: PMC3510376.
78. Rak M, Rustin P. Supernumerary subunits NDUFA3, NDUFA5 and NDUFA12 are required for the formation of the extramembrane arm of human mitochondrial complex I. FEBS letters. 2014;588(9):1832–8. 24717771.
79. Pereira B, Videira A, Duarte M. Novel insights into the role of Neurospora crassa NDUFAF2, an evolutionarily conserved mitochondrial complex I assembly factor. Molecular and cellular biology. 2013;33(13):2623–34. doi: 10.1128/MCB.01476-12 23648483; PubMed Central PMCID: PMC3700111.
80. Nada S, Mori S, Takahashi Y, Okada M. p18/LAMTOR1: a late endosome/lysosome-specific anchor protein for the mTORC1/MAPK signaling pathway. Methods in enzymology. 2014;535:249–63. doi: 10.1016/B978-0-12-397925-4.00015-8 24377928.
81. Soma-Nagae T, Nada S, Kitagawa M, Takahashi Y, Mori S, Oneyama C, et al. The lysosomal signaling anchor p18/LAMTOR1 controls epidermal development by regulating lysosome-mediated catabolic processes. Journal of cell science. 2013;126(Pt 16):3575–84. doi: 10.1242/jcs.121913 23781028.
82. Otey CA, Carpen O. Alpha-actinin revisited: a fresh look at an old player. Cell motility and the cytoskeleton. 2004;58(2):104–11. doi: 10.1002/cm.20007 15083532.
83. Khurana S, Chakraborty S, Lam M, Liu Y, Su YT, Zhao X, et al. Familial focal segmental glomerulosclerosis (FSGS)-linked alpha-actinin 4 (ACTN4) protein mutants lose ability to activate transcription by nuclear hormone receptors. The Journal of biological chemistry. 2012;287(15):12027–35. doi: 10.1074/jbc.M112.345421 22351778; PubMed Central PMCID: PMC3320949.
84. Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H, et al. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. The Journal of cell biology. 1998;140(6):1383–93. 9508771; PubMed Central PMCID: PMC2132673.
85. Agarwal N, Adhikari AS, Iyer SV, Hekmatdoost K, Welch DR, Iwakuma T. MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene. 2013;32(4):462–70. doi: 10.1038/onc.2012.69 22370640; PubMed Central PMCID: PMC3742333.
86. Honda K, Yamada T, Hayashida Y, Idogawa M, Sato S, Hasegawa F, et al. Actinin-4 increases cell motility and promotes lymph node metastasis of colorectal cancer. Gastroenterology. 2005;128(1):51–62. 15633123.
87. Gonzalez IM, Martin PM, Burdsal C, Sloan JL, Mager S, Harris T, et al. Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo. Developmental biology. 2012;361(2):286–300. doi: 10.1016/j.ydbio.2011.10.021 22056783; PubMed Central PMCID: PMC3246567.
88. Ng VY, Ang SN, Chan JX, Choo AB. Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells. Stem Cells. 2010;28(1):29–35. doi: 10.1002/stem.221 19785009.
89. Lu TY, Lu RM, Liao MY, Yu J, Chung CH, Kao CF, et al. Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. The Journal of biological chemistry. 2010;285(12):8719–32. doi: 10.1074/jbc.M109.077081 20064925; PubMed Central PMCID: PMC2838295.
90. Choi JK, Kim YJ. Intrinsic variability of gene expression encoded in nucleosome positioning sequences. Nature genetics. 2009;41(4):498–503. doi: 10.1038/ng.319 19252489.
91. McCullagh E, Seshan A, El-Samad H, Madhani HD. Coordinate control of gene expression noise and interchromosomal interactions in a MAP kinase pathway. Nature cell biology. 2010;12(10):954–62. doi: 10.1038/ncb2097 20852627; PubMed Central PMCID: PMC2948760.
92. Miller-Jensen K, Dey SS, Schaffer DV, Arkin AP. Varying virulence: epigenetic control of expression noise and disease processes. Trends Biotechnol. 2011;29(10):517–25. 21700350.
93. Hooshangi S, Thiberge S, Weiss R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(10):3581–6. doi: 10.1073/pnas.0408507102 15738412; PubMed Central PMCID: PMC552778.
94. Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Statistics in medicine. 1990;9(7):811–8. 2218183.
95. Ovchinnikov DA, Titmarsh DM, Fortuna PR, Hidalgo A, Alharbi S, Whitworth DJ, et al. Transgenic human ES and iPS reporter cell lines for identification and selection of pluripotent stem cells in vitro. Stem Cell Res. 2014;13(2):251–61. doi: 10.1016/j.scr.2014.05.006 25108530.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 8
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Exon 7 Contributes to the Stable Localization of Xist RNA on the Inactive X-Chromosome
- YAP1 Exerts Its Transcriptional Control via TEAD-Mediated Activation of Enhancers
- SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function
- Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation