#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Splice Region Variant in Lowers Non-high Density Lipoprotein Cholesterol and Protects against Coronary Artery Disease


Cholesterol levels in the bloodstream, in particular elevated low-density lipoprotein cholesterol (LDL-C), are strong risk factors for cardiovascular disease, and LDL-C reduction reduces mortality in people at risk. One of the major determinants of plasma LDL-C levels is the low density lipoprotein receptor (LDLR) that acts as a scavenger for cholesterol rich lipoprotein particles. Mutations that disrupt the function of the LDLR or lead to reduction in the number of LDLR usually result in elevated LDL-C in blood. In the current study, we identified, through whole-genome sequencing and imputation into a large fraction of the Icelandic population, four LDLR gene variants that affect non-HDL-C levels (that includes cholesterol in LDL and other pro-atherogenic lipoproteins) and risk of coronary artery disease (CAD). Two variants are known and two are novel. One of them, a splice region variant in intron 14 (rs72658867-A), affects normal splicing and is predicted to generate a truncated LDLR, lacking domains essential for receptor function. Despite this, rs72658867-A lowers non-HDL-C substantially and protects against CAD in the general population, demonstrating that variants that disrupt the LDLR can result in lower cholesterol levels.


Vyšlo v časopise: A Splice Region Variant in Lowers Non-high Density Lipoprotein Cholesterol and Protects against Coronary Artery Disease. PLoS Genet 11(9): e32767. doi:10.1371/journal.pgen.1005379
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005379

Souhrn

Cholesterol levels in the bloodstream, in particular elevated low-density lipoprotein cholesterol (LDL-C), are strong risk factors for cardiovascular disease, and LDL-C reduction reduces mortality in people at risk. One of the major determinants of plasma LDL-C levels is the low density lipoprotein receptor (LDLR) that acts as a scavenger for cholesterol rich lipoprotein particles. Mutations that disrupt the function of the LDLR or lead to reduction in the number of LDLR usually result in elevated LDL-C in blood. In the current study, we identified, through whole-genome sequencing and imputation into a large fraction of the Icelandic population, four LDLR gene variants that affect non-HDL-C levels (that includes cholesterol in LDL and other pro-atherogenic lipoproteins) and risk of coronary artery disease (CAD). Two variants are known and two are novel. One of them, a splice region variant in intron 14 (rs72658867-A), affects normal splicing and is predicted to generate a truncated LDLR, lacking domains essential for receptor function. Despite this, rs72658867-A lowers non-HDL-C substantially and protects against CAD in the general population, demonstrating that variants that disrupt the LDLR can result in lower cholesterol levels.


Zdroje

1. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29: 431–8. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2740366&tool=pmcentrez&rendertype=abstract doi: 10.1161/ATVBAHA.108.179564 19299327

2. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285: 2486–97. http://www.ncbi.nlm.nih.gov/pubmed/11368702 11368702

3. Rana JS, Boekholdt SM, Kastelein JJP, Shah PK. The role of non-HDL cholesterol in risk stratification for coronary artery disease. Curr Atheroscler Rep. 2012;14: 130–4. http://www.ncbi.nlm.nih.gov/pubmed/22203405 doi: 10.1007/s11883-011-0224-x 22203405

4. Lagor WR, Millar JS. Overview of the LDL receptor: relevance to cholesterol metabolism and future approaches for the treatment of coronary heart disease. J Receptor Ligand Channel Res. 2010;3: 1–14.

5. Goldstein JL, Brown MS. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974;249: 5153–5162. 4368448

6. Varghese MJ. Familial hypercholesterolemia: A review. Ann Pediatr Cardiol. 2014;7: 107–17. doi: 10.4103/0974-2069.132478 24987256

7. Singh S, Bittner V. Familial hypercholesterolemia-epidemiology, diagnosis, and screening. Curr Atheroscler Rep. 2015;17: 482. http://www.ncbi.nlm.nih.gov/pubmed/25612857 doi: 10.1007/s11883-014-0482-5 25612857

8. Usifo E, Leigh SEA, Whittall RA, Lench N, Taylor A, Yeats C, et al. Low-Density Lipoprotein Receptor Gene Familial Hypercholesterolemia Variant Database: Update and Pathological Assessment. Ann Hum Genet. 2012;76: 387–401. doi: 10.1111/j.1469-1809.2012.00724.x 22881376

9. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40: 161–169. doi: 10.1038/ng.76 18193043

10. Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP, et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet. 2009;41: 47–55. doi: 10.1038/ng.269 19060911

11. Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43: 333–8. doi: 10.1038/ng.784 21378990

12. Lange LA, Hu Y, Zhang H, Xue C, Schmidt EM, Tang Z-Z, et al. Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol. Am J Hum Genet. 2014;94: 233–45. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3928660&tool=pmcentrez&rendertype=abstract doi: 10.1016/j.ajhg.2014.01.010 24507775

13. Do R, Stitziel NO, Won H-H, Jørgensen AB, Duga S, Angelica Merlini P, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2014; http://www.ncbi.nlm.nih.gov/pubmed/25487149

14. Gudbjartsson DF et al. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet.: In press.

15. Styrkarsdottir U, Thorleifsson G, Sulem P, Gudbjartsson DF, Sigurdsson A, Jonasdottir A, et al. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature. 2013;497: 517–20. http://www.ncbi.nlm.nih.gov/pubmed/23644456 doi: 10.1038/nature12124 23644456

16. Bourbon M, Duarte MA, Alves AC, Medeiros AM, Marques L, Soutar AK. Genetic diagnosis of familial hypercholesterolaemia: the importance of functional analysis of potential splice-site mutations. J Med Genet. 2009;46: 352–7. http://www.ncbi.nlm.nih.gov/pubmed/19411563 doi: 10.1136/jmg.2007.057000 19411563

17. Whittall RA, Matheus S, Cranston T, Miller GJ, Humphries SE. The intron 14 2140+5G>A variant in the low density lipoprotein receptor gene has no effect on plasma cholesterol levels. J Med Genet. 2002;39: e57. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1735227&tool=pmcentrez&rendertype=abstract 12205127

18. Jensen HK. The molecular genetic basis and diagnosis of familial hypercholesterolemia in Denmark. Dan Med Bull. 2002;49: 318–45. 12553167

19. Huijgen R, Kindt I, Fouchier SW, Defesche JC, Hutten BA, Kastelein JJP, et al. Functionality of sequence variants in the genes coding for the low-density lipoprotein receptor and apolipoprotein B in individuals with inherited hypercholesterolemia. Hum Mutat. 2010;31: 752–60. doi: 10.1002/humu.21258 20506408

20. Linsel-Nitschke P, Götz A, Erdmann J, Braenne I, Braund P, Hengstenberg C, et al. Lifelong reduction of LDL-cholesterol related to a common varriant in the LDL-receptor gene decreases the risk of coronary artery disease—A Mendelian randomisation study. PLoS One. 2008;3.

21. Gudnason V, Sigurdsson G, Nissen H, Humphries SE. Common founder mutation in the LDL receptor gene causing familial hypercholesterolaemia in the Icelandic population. Hum Mutat. 1997;10: 36–44. 9222758

22. Zhang F, Lin M, Abidi P, Thiel G, Liu J. Specific interaction of Egr1 and c/EBPbeta leads to the transcriptional activation of the human low density lipoprotein receptor gene. J Biol Chem. 2003;278: 44246–54. http://www.ncbi.nlm.nih.gov/pubmed/12947119 12947119

23. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40: D930–4. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3245002&tool=pmcentrez&rendertype=abstract doi: 10.1093/nar/gkr917 22064851

24. Lehrman MA, Russell DW, Goldstein JL, Brown MS. Alu-Alu recombination deletes splice acceptor sites and produces secreted low density lipoprotein receptor in a subject with familial hypercholesterolemia. J Biol Chem. 1987;262: 3354–61. http://www.ncbi.nlm.nih.gov/pubmed/3818645 3818645

25. Takada D, Emi M, Ezura Y, Nobe Y, Kawamura K, Iino Y, et al. Interaction between the LDL-receptor gene bearing a novel mutation and a variant in the apolipoprotein A-II promoter: molecular study in a 1135-member familial hypercholesterolemia kindred. J Hum Genet. 2002;47: 656–64. 12522687

26. Lehrman MA, Schneider WJ, Südhof TC, Brown MS, Goldstein JL, Russell DW. Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science. 1985;227: 140–6. http://www.ncbi.nlm.nih.gov/pubmed/3155573 3155573

27. Holla ØL, Nakken S, Mattingsdal M, Ranheim T, Berge KE, Defesche JC, et al. Effects of intronic mutations in the LDLR gene on pre-mRNA splicing: Comparison of wet-lab and bioinformatics analyses. Mol Genet Metab. 2009;96: 245–52. http://www.ncbi.nlm.nih.gov/pubmed/19208450 doi: 10.1016/j.ymgme.2008.12.014 19208450

28. Nomenclature and criteria for diagnosis of ischemic heart disease. Report of the Joint International Society and Federation of Cardiology/World Health Organization task force on standardization of clinical nomenclature. Circulation. 1979;59: 607–9. http://www.ncbi.nlm.nih.gov/pubmed/761341 761341

29. Jørgensen T, Borch-Johnsen K, Thomsen TF, Ibsen H, Glümer C, Pisinger C. A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99. Eur J Cardiovasc Prev Rehabil. 2003;10: 377–86. 14663300

30. Wetzels JFM, Kiemeney LALM, Swinkels DW, Willems HL, den Heijer M. Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. Kidney Int. 2007;72: 632–7. http://www.ncbi.nlm.nih.gov/pubmed/17568781 17568781

31. Azizi F, Ghanbarian A, Momenan AA, Hadaegh F, Mirmiran P, Hedayati M, et al. Prevention of non-communicable disease in a population in nutrition transition: Tehran Lipid and Glucose Study phase II. Trials. 2009;10: 5. doi: 10.1186/1745-6215-10-5 19166627

32. Kutyavin I V, Milesi D, Belousov Y, Podyminogin M, Vorobiev A, Gorn V, et al. A novel endonuclease IV post-PCR genotyping system. Nucleic Acids Res. 2006;34: e128. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1636472&tool=pmcentrez&rendertype=abstract 17012270

33. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25: 1754–60. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2705234&tool=pmcentrez&rendertype=abstract doi: 10.1093/bioinformatics/btp324 19451168

34. Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S, et al. Parental origin of sequence variants associated with complex diseases. Nature. 2009;462: 868–874. doi: 10.1038/nature08625 20016592

35. Kong A, Masson G, Frigge ML, Gylfason A, Zusmanovich P, Thorleifsson G, et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat Genet. 2008;40: 1068–1075. doi: 10.1038/ng.216 19165921

36. Steinthorsdottir V, Thorleifsson G, Sulem P, Helgason H, Grarup N, Sigurdsson A, et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet. 2014;46: 294–8. doi: 10.1038/ng.2882 24464100

37. Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55: 997–1004. 11315092

38. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics. 2010;26: 2069–70. doi: 10.1093/bioinformatics/btq330 20562413

39. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, et al. Genetics of gene expression and its effect on disease. Nature. 2008;452: 423–8. http://www.ncbi.nlm.nih.gov/pubmed/18344981 doi: 10.1038/nature06758 18344981

40. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7: 562–78. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3334321&tool=pmcentrez&rendertype=abstract doi: 10.1038/nprot.2012.016 22383036

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#