-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance
The centromeric histone protein, CENH3, plays an important role in chromosome segregation during mitosis and meiosis. Here we show that single amino acid changes in CENH3, while producing no obvious effect on mitosis or meiosis, affect segregation postzygotically upon outcrossing to plants carrying wild-type centromeres. This results in uniparental inheritance among some progeny, and seed death in a larger fraction of progeny. Interestingly, changes competent to induce haploid in Arabidopsis existed in a TILLING population and in unrelated plant species. Our findings have two major consequences. First, uniparental inheritance facilitates the production of haploid plants that can easily be doubled to produce completely homozygous lines in a single generation. Secondly, our findings suggest that natural variation in CENH3 may result in partial reproductive isolation, because chromosomes of the mutant parent from F1 hybrid progeny are culled during embryonic development, while no reproductive defects are observed in self-pollinated plants. We do not know if the same mutations are haploid-inducing in other species, but uniparental chromosome loss, and the seed abortion that accompanies it results in an outcrossing-specific penalty that could potentially be involved in reproductive isolation.
Vyšlo v časopise: Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance. PLoS Genet 11(9): e32767. doi:10.1371/journal.pgen.1005494
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005494Souhrn
The centromeric histone protein, CENH3, plays an important role in chromosome segregation during mitosis and meiosis. Here we show that single amino acid changes in CENH3, while producing no obvious effect on mitosis or meiosis, affect segregation postzygotically upon outcrossing to plants carrying wild-type centromeres. This results in uniparental inheritance among some progeny, and seed death in a larger fraction of progeny. Interestingly, changes competent to induce haploid in Arabidopsis existed in a TILLING population and in unrelated plant species. Our findings have two major consequences. First, uniparental inheritance facilitates the production of haploid plants that can easily be doubled to produce completely homozygous lines in a single generation. Secondly, our findings suggest that natural variation in CENH3 may result in partial reproductive isolation, because chromosomes of the mutant parent from F1 hybrid progeny are culled during embryonic development, while no reproductive defects are observed in self-pollinated plants. We do not know if the same mutations are haploid-inducing in other species, but uniparental chromosome loss, and the seed abortion that accompanies it results in an outcrossing-specific penalty that could potentially be involved in reproductive isolation.
Zdroje
1. Steiner FA, Henikoff S. Diversity in the organization of centromeric chromatin. Current Opinion in Genetics & Development. 2015;31(0):28–35. doi: http://dx.doi.org/10.1016/j.gde.2015.03.010.
2. Fukagawa T, Earnshaw William C. The Centromere: Chromatin Foundation for the Kinetochore Machinery. Developmental Cell. 30(5):496–508. doi: 10.1016/j.devcel.2014.08.016 25203206
3. Cheeseman IM. The Kinetochore. Cold Spring Harbor Perspectives in Biology. 2014;6(7). doi: 10.1101/cshperspect.a015826
4. Duro E, Marston AL. From equator to pole: splitting chromosomes in mitosis and meiosis. Genes & Development. 2015;29(2):109–22. doi: 10.1101/gad.255554.114
5. Allshire RC, Karpen GH. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet. 2008;9(12):923–37. doi: 10.1038/nrg2466 19002142
6. Sekulic N, Black BE. Molecular underpinnings of centromere identity and maintenance. Trends in Biochemical Sciences. 37(6):220–9. doi: 10.1016/j.tibs.2012.01.003 22410197
7. Palmer DK, O'Day K, Trong HL, Charbonneau H, Margolis RL. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proceedings of the National Academy of Sciences. 1991;88(9):3734–8. doi: 10.1073/pnas.88.9.3734
8. Earnshaw W, Migeon B. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma. 1985;92(4):290–6. doi: 10.1007/BF00329812 2994966
9. Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S. Centromeric Localization and Adaptive Evolution of an Arabidopsis Histone H3 Variant. The Plant Cell Online. 2002;14(5):1053–66. doi: 10.1105/tpc.010425
10. Dalal Y, Furuyama T, Vermaak D, Henikoff S. Structure, dynamics, and evolution of centromeric nucleosomes. Proceedings of the National Academy of Sciences. 2007;104(41):15974–81. doi: 10.1073/pnas.0707648104
11. Maheshwari S, Tan EH, West A, Franklin FCH, Comai L, Chan SWL. Naturally Occurring Differences in CENH3 Affect Chromosome Segregation in Zygotic Mitosis of Hybrids. Plos Genet. 2015;11(1):e1004970. doi: 10.1371/journal.pgen.1004970 25622028
12. Malik HS, Henikoff S. Phylogenomics of the nucleosome. Nat Struct Mol Biol. 2003;10(11):882–91.
13. Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes & Development. 1995;9(5):573–86. doi: 10.1101/gad.9.5.573
14. Buchwitz BJ, Ahmad K, Moore LL, Roth MB, Henikoff S. Cell division: A histone-H3-like protein in C. elegans. Nature. 1999;401(6753):547–8. 10524621
15. Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proceedings of the National Academy of Sciences. 2000;97(3):1148–53. doi: 10.1073/pnas.97.3.1148
16. Ravi M, Kwong PN, Menorca RMG, Valencia JT, Ramahi JS, Stewart JL, et al. The Rapidly Evolving Centromere-Specific Histone Has Stringent Functional Requirements in Arabidopsis thaliana. Genetics. 2010;186(2):461–71. doi: 10.1534/genetics.110.120337 20628040
17. Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D, Nakamura Y, et al. HJURP Is a Cell-Cycle-Dependent Maintenance and Deposition Factor of CENP-A at Centromeres. Cell. 2009;137(3):485–97. doi: http://dx.doi.org/10.1016/j.cell.2009.02.040. doi: 10.1016/j.cell.2009.02.040 19410545
18. Mishra PK, Au W-C, Choy JS, Kuich PH, Baker RE, Foltz DR, et al. Misregulation of Scm3p/HJURP Causes Chromosome Instability in Saccharomyces cerevisiae and Human Cells. Plos Genet. 2011;7(9):e1002303. doi: 10.1371/journal.pgen.1002303 PMC3183075. 21980305
19. Lermontova I, Kuhlmann M, Friedel S, Rutten T, Heckmann S, Sandmann M, et al. Arabidopsis KINETOCHORE NULL2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. The Plant Cell. 2013;25(9):3389–404. doi: 10.1105/tpc.113.114736 24014547
20. Tan EH, Henry IM, Ravi M, Bradnam KR, Mandakova T, Marimuthu MP, et al. Catastrophic chromosomal restructuring during genome elimination in plants. eLife. 2015:e06516.
21. Ravi M, Chan SWL. Haploid plants produced by centromere-mediated genome elimination. Nature. 2010;464(7288):615–8. doi: http://www.nature.com/nature/journal/v464/n7288/suppinfo/nature08842_S1.html. doi: 10.1038/nature08842 20336146
22. Lermontova I, Koroleva O, Rutten T, Fuchs J, Schubert V, Moraes I, et al. Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. The Plant Journal. 2011;68(1):40–50. doi: 10.1111/j.1365-313X.2011.04664.x 21635586
23. Forster BP, Thomas WTB. Doubled Haploids in Genetics and Plant Breeding. Plant Breeding Reviews: John Wiley & Sons, Inc.; 2010. p. 57–88.
24. Wędzony M, Forster BP, Żur I, Golemiec E, Szechyńska-Hebda M, Dubas E, et al. Progress in Doubled Haploid Technology in Higher Plants. In: Touraev A, Forster B, Jain SM, editors. Advances in Haploid Production in Higher Plants: Springer Netherlands; 2009. p. 1–33.
25. Tester M, Langridge P. Breeding Technologies to Increase Crop Production in a Changing World. Science. 2010;327(5967):818–22. doi: 10.1126/science.1183700 20150489
26. Ng PC, Henikoff S. Predicting the Effects of Amino Acid Substitutions on Protein Function. Annual Review of Genomics and Human Genetics. 2006;7(1):61–80. doi: 10.1146/annurev.genom.7.080505.115630 16824020.
27. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protocols. 2009;4(8):1073–81.
28. Henry IM, Dilkes BP, Miller ES, Burkart-Waco D, Comai L. Phenotypic Consequences of Aneuploidy in Arabidopsis thaliana. Genetics. 2010;186(4):1231–45. doi: 10.1534/genetics.110.121079 20876566
29. Cifuentes M, Rivard M, Pereira L, Chelysheva L, Mercier R. Haploid Meiosis in Arabidopsis: Double-Strand Breaks Are Formed and Repaired but Without Synapsis and Crossovers. PLoS ONE. 2013;8(8):e72431. doi: 10.1371/journal.pone.0072431 23951324
30. Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, et al. Large-scale discovery of induced point mutations with high-throughput TILLING. Genome research. 2003;13(3):524–30. 12618384
31. Ravi M, Marimuthu MPA, Tan EH, Maheshwari S, Henry IM, Marin-Rodriguez B, et al. A haploid genetics toolbox for Arabidopsis thaliana. Nat Commun. 2014;5. doi: 10.1038/ncomms6334
32. Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S, Fitz J, et al. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet. 2011;43(10):956–63. doi: http://www.nature.com/ng/journal/v43/n10/abs/ng.911.html—supplementary-information. doi: 10.1038/ng.911 21874002
33. Hirsch CD, Wu Y, Yan H, Jiang J. Lineage-Specific Adaptive Evolution of the Centromeric Protein CENH3 in Diploid and Allotetraploid Oryza Species. Molecular Biology and Evolution. 2009;26(12):2877–85. doi: 10.1093/molbev/msp208 19741004
34. Tachiwana H, Kagawa W, Shiga T, Osakabe A, Miya Y, Saito K, et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature. 2011;476(7359):232–5. doi: http://www.nature.com/nature/journal/v476/n7359/abs/nature10258.html—supplementary-information. doi: 10.1038/nature10258 21743476
35. Sekulic N, Bassett EA, Rogers DJ, Black BE. The structure of (CENP-A-H4)2 reveals physical features that mark centromeres. Nature. 2010;467(7313):347–51. doi: http://www.nature.com/nature/journal/v467/n7313/abs/nature09323.html—supplementary-information. doi: 10.1038/nature09323 20739937
36. Zhang W, Colmenares Serafin U, Karpen Gary H. Assembly of Drosophila Centromeric Nucleosomes Requires CID Dimerization. Molecular Cell. 2012;45(2):263–9. doi: http://dx.doi.org/10.1016/j.molcel.2011.12.010. doi: 10.1016/j.molcel.2011.12.010 22209075
37. Bassett Emily A, DeNizio J, Barnhart-Dailey Meghan C, Panchenko T, Sekulic N, Rogers Danielle J, et al. HJURP Uses Distinct CENP-A Surfaces to Recognize and to Stabilize CENP-A/Histone H4 for Centromere Assembly. Developmental Cell. 2012;22(4):749–62. doi: http://dx.doi.org/10.1016/j.devcel.2012.02.001. doi: 10.1016/j.devcel.2012.02.001 22406139
38. Ingouff M, Rademacher S, Holec S, Šoljić L, Xin N, Readshaw A, et al. Zygotic Resetting of the HISTONE 3 Variant Repertoire Participates in Epigenetic Reprogramming in Arabidopsis. Current Biology. 2010;20(23):2137–43. doi: http://dx.doi.org/10.1016/j.cub.2010.11.012. doi: 10.1016/j.cub.2010.11.012 21093266
39. Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proceedings of the National Academy of Sciences. 2011;108(33):E498–E505. doi: 10.1073/pnas.1103190108
40. Forster BP, Heberle-Bors E, Kasha KJ, Touraev A. The resurgence of haploids in higher plants. Trends in Plant Science. 2007;12(8):368–75. doi: http://dx.doi.org/10.1016/j.tplants.2007.06.007. 17629539
41. Chan SWL. Chromosome engineering: power tools for plant genetics. Trends in Biotechnology. 28(12):605–10. doi: 10.1016/j.tibtech.2010.09.002 20933291
42. Dunwell JM. Haploids in flowering plants: Origins and exploitation. Plant Biotechnol Journal. 2010; 8 : 377–424.
43. Murovec J, Bohanec B. Haploids and Doubled Haploids in Plant Breeding. In: Abdurakhmonov I, editor. Plant Breeding2012.
44. Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K. Crop genome sequencing: lessons and rationales. Trends in Plant Science. 2011;16(2):77–88. doi: http://dx.doi.org/10.1016/j.tplants.2010.10.005. doi: 10.1016/j.tplants.2010.10.005 21081278
45. Seymour DK, Filiault DL, Henry IM, Monson-Miller J, Ravi M, Pang A, et al. Rapid creation of Arabidopsis doubled haploid lines for quantitative trait locus mapping. Proceedings of the National Academy of Sciences. 2012 : 4227–32. doi: 10.1073/pnas.1117277109
46. Wijnker E, van Dun K, de Snoo CB, Lelivelt CLC, Keurentjes JJB, Naharudin NS, et al. Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant. Nat Genet. 2012;44(4):467–70. doi: http://www.nature.com/ng/journal/v44/n4/abs/ng.2203.html—supplementary-information. doi: 10.1038/ng.2203 22406643
47. Marimuthu MPA, Jolivet S, Ravi M, Pereira L, Davda JN, Cromer L, et al. Synthetic Clonal Reproduction Through Seeds. Science. 2011;331(6019):876. doi: 10.1126/science.1199682 21330535
48. Ravi M, Marimuthu MPA, Tan EH, Maheshwari S. A haploid genetics toolbox for Arabidopsis thaliana. Nature Communications. In Press.
49. Comai L, Henikoff S. TILLING: practical single-nucleotide mutation discovery. The Plant Journal. 2006;45(4):684–94. doi: 10.1111/j.1365-313X.2006.02670.x 16441355
50. Ravi M, Shibata F, Ramahi JS, Nagaki K, Chen CB, Murata M, et al. Meiosis-Specific Loading of the Centromere-Specific Histone CENH3 in Arabidopsis thaliana. Plos Genet. 2011;7(6). doi: Artn E1002121 doi: 10.1371/Journal.Pgen.1002121 WOS:000292386300037.
51. Clough SJ, Bent AF. Floral dip: a simplified method forAgrobacterium‐mediated transformation ofArabidopsis thaliana. The plant journal. 1998;16(6):735–43. 10069079
52. Henry IM, Dilkes BP, Young K, Watson B, Wu H, Comai L. Aneuploidy and Genetic Variation in the Arabidopsis thaliana Triploid Response. Genetics. 2005;170(4):1979–88. doi: 10.1534/genetics.104.037788 15944363
53. Armstrong SJ, Franklin FCH, Jones GH. Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. Journal of Cell Science. 2001;114(23):4207–17.
54. Peterson R, Slovin JP, Chen C. A simplified method for differential staining of aborted and non-aborted pollen grains. International Journal of Plant Biology. 2010;1(2):13.
55. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9. doi: 10.1093/bioinformatics/bts199 22543367
Štítky
Genetika Reprodukčná medicína
Článek The Chromatin Protein DUET/MMD1 Controls Expression of the Meiotic Gene during Male Meiosis inČlánek Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2015 Číslo 9- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Retraction: RNAi-Dependent and Independent Control of LINE1 Accumulation and Mobility in Mouse Embryonic Stem Cells
- Signaling from Within: Endocytic Trafficking of the Robo Receptor Is Required for Midline Axon Repulsion
- A Splice Region Variant in Lowers Non-high Density Lipoprotein Cholesterol and Protects against Coronary Artery Disease
- The Chromatin Protein DUET/MMD1 Controls Expression of the Meiotic Gene during Male Meiosis in
- A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures
- Slit-Dependent Endocytic Trafficking of the Robo Receptor Is Required for Son of Sevenless Recruitment and Midline Axon Repulsion
- Expression of Concern: Protein Under-Wrapping Causes Dosage Sensitivity and Decreases Gene Duplicability
- Mutagenesis by AID: Being in the Right Place at the Right Time
- Identification of as a Genetic Modifier That Regulates the Global Orientation of Mammalian Hair Follicles
- Bridges Meristem and Organ Primordia Boundaries through , , and during Flower Development in
- Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci
- KLK5 Inactivation Reverses Cutaneous Hallmarks of Netherton Syndrome
- Differential Expression of Ecdysone Receptor Leads to Variation in Phenotypic Plasticity across Serial Homologs
- Receptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception
- Cognitive Function Related to the Gene Acquired from an LTR Retrotransposon in Eutherians
- Critical Function of γH2A in S-Phase
- Arabidopsis AtPLC2 Is a Primary Phosphoinositide-Specific Phospholipase C in Phosphoinositide Metabolism and the Endoplasmic Reticulum Stress Response
- XBP1-Independent UPR Pathways Suppress C/EBP-β Mediated Chondrocyte Differentiation in ER-Stress Related Skeletal Disease
- Integration of Genome-Wide SNP Data and Gene-Expression Profiles Reveals Six Novel Loci and Regulatory Mechanisms for Amino Acids and Acylcarnitines in Whole Blood
- A Genome-Wide Association Study of a Biomarker of Nicotine Metabolism
- Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID
- A Genome-Wide Association Analysis Reveals Epistatic Cancellation of Additive Genetic Variance for Root Length in
- Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis
- RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization
- Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes
- Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes
- ARID1A Is Essential for Endometrial Function during Early Pregnancy
- Predicting Carriers of Ongoing Selective Sweeps without Knowledge of the Favored Allele
- An Interaction between RRP6 and SU(VAR)3-9 Targets RRP6 to Heterochromatin and Contributes to Heterochromatin Maintenance in
- Photoreceptor Specificity in the Light-Induced and COP1-Mediated Rapid Degradation of the Repressor of Photomorphogenesis SPA2 in Arabidopsis
- Autophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in
- Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots
- Rescheduling Behavioral Subunits of a Fixed Action Pattern by Genetic Manipulation of Peptidergic Signaling
- A Gene Regulatory Program for Meiotic Prophase in the Fetal Ovary
- Cell-Autonomous Gβ Signaling Defines Neuron-Specific Steady State Serotonin Synthesis in
- Discovering Genetic Interactions in Large-Scale Association Studies by Stage-wise Likelihood Ratio Tests
- The RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis
- The AMPK, Snf1, Negatively Regulates the Hog1 MAPK Pathway in ER Stress Response
- The Parkinson’s Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway
- Multicopy Single-Stranded DNA Directs Intestinal Colonization of Enteric Pathogens
- Recurrent Domestication by Lepidoptera of Genes from Their Parasites Mediated by Bracoviruses
- Three Different Pathways Prevent Chromosome Segregation in the Presence of DNA Damage or Replication Stress in Budding Yeast
- Identification of Four Mouse Diabetes Candidate Genes Altering β-Cell Proliferation
- The Intolerance of Regulatory Sequence to Genetic Variation Predicts Gene Dosage Sensitivity
- Synergistic and Dose-Controlled Regulation of Cellulase Gene Expression in
- Genome Sequence and Transcriptome Analyses of : Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae)
- Ty3 Retrotransposon Hijacks Mating Yeast RNA Processing Bodies to Infect New Genomes
- FUS Interacts with HSP60 to Promote Mitochondrial Damage
- Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance
- Genome-Wide Association Study with Targeted and Non-targeted NMR Metabolomics Identifies 15 Novel Loci of Urinary Human Metabolic Individuality
- Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins
- A Large-Scale Functional Analysis of Putative Target Genes of Mating-Type Loci Provides Insight into the Regulation of Sexual Development of the Cereal Pathogen
- A Genetic Selection for Mutants Reveals an Interaction between DNA Polymerase IV and the Replicative Polymerase That Is Required for Translesion Synthesis
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Arabidopsis AtPLC2 Is a Primary Phosphoinositide-Specific Phospholipase C in Phosphoinositide Metabolism and the Endoplasmic Reticulum Stress Response
- Bridges Meristem and Organ Primordia Boundaries through , , and during Flower Development in
- KLK5 Inactivation Reverses Cutaneous Hallmarks of Netherton Syndrome
- XBP1-Independent UPR Pathways Suppress C/EBP-β Mediated Chondrocyte Differentiation in ER-Stress Related Skeletal Disease
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy