Genome-Wide Association Study with Targeted and Non-targeted NMR Metabolomics Identifies 15 Novel Loci of Urinary Human Metabolic Individuality
Human metabolism is influenced by genetic and environmental factors defining a person’s metabolic individuality. This individuality is linked to personal differences in the ability to react on metabolic challenges and in the susceptibility to specific diseases. By investigating how common variants in genetic regions (loci) affect individual blood metabolite levels, the substantial contribution of genetic inheritance to metabolic individuality has been demonstrated previously. Meanwhile, more than 150 loci influencing metabolic homeostasis in blood are known. Here we shift the focus to genetic variants that modulate urinary metabolite excretion, for which only 11 loci were reported so far. In the largest genetic study on urinary metabolites to date, we identified 15 additional loci. Most of the 26 loci also affect blood metabolite levels. This shows that the metabolic individuality seen in blood is also reflected in urine, which is expected when urine is regarded as “diluted blood”. Nonetheless, we also found loci that appear to primarily influence metabolite excretion. For instance, we identified genetic variants near a gene of a transporter that change the capability for renal re-absorption of the transporter’s substrate. Thus, our findings could help to elucidate molecular mechanisms influencing kidney function and the body’s detoxification capabilities.
Vyšlo v časopise:
Genome-Wide Association Study with Targeted and Non-targeted NMR Metabolomics Identifies 15 Novel Loci of Urinary Human Metabolic Individuality. PLoS Genet 11(9): e32767. doi:10.1371/journal.pgen.1005487
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005487
Souhrn
Human metabolism is influenced by genetic and environmental factors defining a person’s metabolic individuality. This individuality is linked to personal differences in the ability to react on metabolic challenges and in the susceptibility to specific diseases. By investigating how common variants in genetic regions (loci) affect individual blood metabolite levels, the substantial contribution of genetic inheritance to metabolic individuality has been demonstrated previously. Meanwhile, more than 150 loci influencing metabolic homeostasis in blood are known. Here we shift the focus to genetic variants that modulate urinary metabolite excretion, for which only 11 loci were reported so far. In the largest genetic study on urinary metabolites to date, we identified 15 additional loci. Most of the 26 loci also affect blood metabolite levels. This shows that the metabolic individuality seen in blood is also reflected in urine, which is expected when urine is regarded as “diluted blood”. Nonetheless, we also found loci that appear to primarily influence metabolite excretion. For instance, we identified genetic variants near a gene of a transporter that change the capability for renal re-absorption of the transporter’s substrate. Thus, our findings could help to elucidate molecular mechanisms influencing kidney function and the body’s detoxification capabilities.
Zdroje
1. Gieger C, Geistlinger L, Altmaier E, Hrabě de Angelis M, Kronenberg F, Meitinger T, et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genetics. 2008 Nov;4(11):e1000282. doi: 10.1371/journal.pgen.1000282 19043545
2. Hicks AA, Pramstaller PP, Johansson A, Vitart V, Rudan I, Ugocsai P, et al. Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genetics. 2009 Oct;5(10):e1000672. doi: 10.1371/journal.pgen.1000672 19798445
3. Tanaka T, Shen J, Abecasis GR, Kisialiou A, Ordovas JM, Guralnik JM, et al. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genetics. 2009 Jan;5(1):e1000338. doi: 10.1371/journal.pgen.1000338 19148276
4. Illig T, Gieger C, Zhai G, Römisch-Margl W, Wang-Sattler R, Prehn C, et al. A genome-wide perspective of genetic variation in human metabolism. Nature Genetics. 2010 Feb;42(2):137–41. doi: 10.1038/ng.507 20037589
5. Nicholson G, Rantalainen M, Li JV, Maher AD, Malmodin D, Ahmadi KR, et al. A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection. PLoS Genetics. 2011 Sep;7(9):e1002270. doi: 10.1371/journal.pgen.1002270 21931564
6. Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wägele B, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011 Sep 1;477(7362):54–60. doi: 10.1038/nature10354 21886157
7. Kettunen J, Tukiainen T, Sarin AP, Ortega-Alonso A, Tikkanen E, Lyytikäinen LP, et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nature Genetics. 2012 Mar;44(3):269–76. doi: 10.1038/ng.1073 22286219
8. Krumsiek J, Suhre K, Evans AM, Mitchell MW, Mohney RP, Milburn MV, et al. Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information. PLoS Genetics. 2012;8(10):e1003005. doi: 10.1371/journal.pgen.1003005 23093944
9. Suhre K, Gieger C. Genetic variation in metabolic phenotypes: study designs and applications. Nature Reviews Genetics. 2012 Nov;13(11):759–69. doi: 10.1038/nrg3314 23032255
10. Suhre K, Wallaschofski H, Raffler J, Friedrich N, Haring R, Michael K, et al. A genome-wide association study of metabolic traits in human urine. Nature Genetics. 2011 Jun;43(6):565–9. doi: 10.1038/ng.837 21572414
11. Montoliu I, Genick U, Ledda M, Collino S, Martin FP, le Coutre J, et al. Current status on genome-metabolome-wide associations: an opportunity in nutrition research. Genes & Nutrition. 2013 Jan;8(1):19–27.
12. Rueedi R, Ledda M, Nicholls AW, Salek RM, Marques-Vidal P, Morya E, et al. Genome-wide association study of metabolic traits reveals novel gene-metabolite-disease links. PLoS Genetics. 2014 Feb;10(2):e1004132. doi: 10.1371/journal.pgen.1004132 24586186
13. Alonso A, Rodríguez MA, Vinaixa M, Tortosa R, Correig X, Julià A, et al. Focus: a robust workflow for one-dimensional NMR spectral analysis. Analytical Chemistry. 2014 Jan 21;86(2):1160–9. doi: 10.1021/ac403110u 24354303
14. Xie W, Wood AR, Lyssenko V, Weedon MN, Knowles JW, Alkayyali S, et al. Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes. Diabetes. 2013 Jun;62(6):2141–50. doi: 10.2337/db12-0876 23378610
15. Sabater-Lleal M, Huang J, Chasman D, Naitza S, Dehghan A, Johnson AD, et al. Multiethnic meta-analysis of genome-wide association studies in >100 000 subjects identifies 23 fibrinogen-associated Loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease. Circulation. 2013 Sep 17;128(12):1310–24. doi: 10.1161/CIRCULATIONAHA.113.002251 23969696
16. Hong MG, Karlsson R, Magnusson PK, Lewis MR, Isaacs W, Zheng LS, et al. A genome-wide assessment of variability in human serum metabolism. Human Mutation. 2013 Mar;34(3):515–24. doi: 10.1002/humu.22267 23281178
17. Global Lipids Genetics C, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, et al. Discovery and refinement of loci associated with lipid levels. Nature Genetics. 2013 Nov;45(11):1274–83. doi: 10.1038/ng.2797 24097068
18. Evans DM, Zhu G, Dy V, Heath AC, Madden PA, Kemp JP, et al. Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Human Molecular Genetics. 2013 Oct 1;22(19):3998–4006. doi: 10.1093/hmg/ddt239 23720494
19. Chambers JC, Zhang W, Lord GM, van der Harst P, Lawlor DA, Sehmi JS, et al. Genetic loci influencing kidney function and chronic kidney disease. Nature Genetics. 2010 May;42(5):373–5. doi: 10.1038/ng.566 20383145
20. Seppälä I, Kleber ME, Lyytikäinen LP, Hernesniemi JA, Mäkelä KM, Oksala N, et al. Genome-wide association study on dimethylarginines reveals novel AGXT2 variants associated with heart rate variability but not with overall mortality. European Heart Journal. 2014 Feb;35(8):524–31. doi: 10.1093/eurheartj/eht447 24159190
21. Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nature Genetics. 2014 Jun;46(6):543–50. doi: 10.1038/ng.2982 24816252
22. Raffler J, Rämisch-Margl W, Petersen AK, Pagel P, Blöchl F, Hengstenberg C, et al. Identification and MS-assisted interpretation of genetically influenced NMR signals in human plasma. Genome Medicine. 2013 Feb 15;5(2):13. doi: 10.1186/gm417 23414815
23. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Research. 2014 Jan;42(Database issue):D1001–6. doi: 10.1093/nar/gkt1229 24316577
24. Demirkan A, Henneman P, Verhoeven A, Dharuri H, Amin N, van Klinken JB, et al. Insight in genome-wide association of metabolite quantitative traits by exome sequence analyses. PLoS Genetics. 2015 Jan;11(1):e1004835. doi: 10.1371/journal.pgen.1004835 25569235
25. Yu B, Zheng Y, Alexander D, Morrison AC, Coresh J, Boerwinkle E. Genetic Determinants Influencing Human Serum Metabolome among African Americans. PLoS Genetics. 2014 Mar;10(3):e1004212. doi: 10.1371/journal.pgen.1004212 24625756
26. Köttgen A, Pattaro C, Böger CA, Fuchsberger C, Olden M, Glazer NL, et al. New loci associated with kidney function and chronic kidney disease. Nature Genetics. 2010 May;42(5):376–84. doi: 10.1038/ng.568 20383146
27. Tin A, Colantuoni E, Boerwinkle E, Kottgen A, Franceschini N, Astor BC, et al. Using multiple measures for quantitative trait association analyses: application to estimated glomerular filtration rate. Journal of Human Genetics. 2013 Jul;58(7):461–6. doi: 10.1038/jhg.2013.23 23535967
28. Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, Larson MG, et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metabolism. 2013 Jul 2;18(1):130–43. doi: 10.1016/j.cmet.2013.06.013 23823483
29. Kleber ME, Seppälä I, Pilz S, Hoffmann MM, Tomaschitz A, Oksala N, et al. Genome-wide association study identifies 3 genomic loci significantly associated with serum levels of homoarginine: the AtheroRemo Consortium. Circulation Cardiovascular Genetics. 2013 Oct;6(5):505–13. doi: 10.1161/CIRCGENETICS.113.000108 24047826
30. Lange LA, Croteau-Chonka DC, Marvelle AF, Qin L, Gaulton KJ, Kuzawa CW, et al. Genome-wide association study of homocysteine levels in Filipinos provides evidence for CPS1 in women and a stronger MTHFR effect in young adults. Human Molecular Genetics. 2010 May 15;19(10):2050–8. doi: 10.1093/hmg/ddq062 20154341
31. Summar ML, Gainer JV, Pretorius M, Malave H, Harris S, Hall LD, et al. Relationship between carbamoyl-phosphate synthetase genotype and systemic vascular function. Hypertension. 2004 Feb;43(2):186–91. 14718356
32. Zhang Y, Tong Y, Zhang Y, Ding H, Zhang H, Geng Y, et al. Two Novel Susceptibility SNPs for Ischemic Stroke Using Exome Sequencing in Chinese Han Population. Molecular Neurobiology. 2014 Apr;49(2):852–62. doi: 10.1007/s12035-013-8561-0 24122314
33. Bunker RD, Bulloch EM, Dickson JM, Loomes KM, Baker EN. Structure and function of human xylulokinase, an enzyme with important roles in carbohydrate metabolism. The Journal of Biological Chemistry. 2013 Jan 18;288(3):1643–52. doi: 10.1074/jbc.M112.427997 23179721
34. Jung JY, Lee HS, Kang DG, Kim NS, Cha MH, Bang OS, et al. 1H-NMR-based metabolomics study of cerebral infarction. Stroke; a journal of cerebral circulation. 2011 May;42(5):1282–8. doi: 10.1161/STROKEAHA.110.598789 21474802
35. Bröer S, Bailey CG, Kowalczuk S, Ng C, Vanslambrouck JM, Rodgers H, et al. Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. The Journal of Clinical Investigation. 2008 Dec;118(12):3881–92. doi: 10.1172/JCI36625 19033659
36. Kittel A, Müller F, König J, Mieth M, Sticht H, Zolk O, et al. Alanine-glyoxylate aminotransferase 2 (AGXT2) polymorphisms have considerable impact on methylarginine and beta-aminoisobutyrate metabolism in healthy volunteers. PloS ONE. 2014;9(2):e88544. doi: 10.1371/journal.pone.0088544 24586340
37. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010 Aug 5;466(7307):707–13. doi: 10.1038/nature09270 20686565
38. Rothman N, Garcia-Closas M, Chatterjee N, Malats N, Wu X, Figueroa JD, et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nature Genetics. 2010 Nov;42(11):978–84. doi: 10.1038/ng.687 20972438
39. Figueroa JD, Ye Y, Siddiq A, Garcia-Closas M, Chatterjee N, Prokunina-Olsson L, et al. Genome-wide association study identifies multiple loci associated with bladder cancer risk. Human Molecular Genetics. 2014 Mar 1;23(5):1387–98. doi: 10.1093/hmg/ddt519 24163127
40. Hein DW. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutation Research. 2002 Sep 30;506–507:65–77. 12351146
41. Magalon H, Patin E, Austerlitz F, Hegay T, Aldashev A, Quintana-Murci L, et al. Population genetic diversity of the NAT2 gene supports a role of acetylation in human adaptation to farming in Central Asia. European Journal of Human Genetics: EJHG. 2008 Feb;16(2):243–51. 18043717
42. Patin E, Barreiro LB, Sabeti PC, Austerlitz F, Luca F, Sajantila A, et al. Deciphering the ancient and complex evolutionary history of human arylamine N-acetyltransferase genes. American Journal of Human Genetics. 2006 Mar;78(3):423–36. 16416399
43. Vatsis KP, Martell KJ, Weber WW. Diverse point mutations in the human gene for polymorphic N-acetyltransferase. Proceedings of the National Academy of Sciences of the United States of America. 1991 Jul 15;88(14):6333–7. 2068113
44. Gahl WA, Huizing M. Hermansky-Pudlak Syndrome. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, et al., editors. GeneReviews(R). Seattle (WA)1993.
45. Tomoeda K, Awata H, Matsuura T, Matsuda I, Ploechl E, Milovac T, et al. Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria. Molecular Genetics and Metabolism. 2000 Nov;71(3):506–10. 11073718
46. Fujino T, Takei YA, Sone H, Ioka RX, Kamataki A, Magoori K, et al. Molecular identification and characterization of two medium-chain acyl-CoA synthetases, MACS1 and the Sa gene product. The Journal of Biological Chemistry. 2001 Sep 21;276(38):35961–6. 11470804
47. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014 Feb 20;506(7488):376–81. doi: 10.1038/nature12873 24390342
48. Rodríguez-Flores JL, Zhang K, Kang SW, Wen G, Ghosh S, Friese RS, et al. Conserved regulatory motifs at phenylethanolamine N-methyltransferase (PNMT) are disrupted by common functional genetic variation: an integrated computational/experimental approach. Mammalian Genome. 2010 Apr;21(3–4):195–204. doi: 10.1007/s00335-010-9253-y 20204374
49. Wang H, Fei YJ, Kekuda R, Yang-Feng TL, Devoe LD, Leibach FH, et al. Structure, function, and genomic organization of human Na(+)-dependent high-affinity dicarboxylate transporter. American journal of physiology Cell Physiology. 2000 May;278(5):C1019–30. 10794676
50. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012 Nov 1;491(7422):56–65. doi: 10.1038/nature11632 23128226
51. Arnold M, Raffler J, Pfeufer A, Suhre K, Kastenmüller G. SNiPA: an interactive, genetic variant-centered annotation browser. Bioinformatics. 2015 Apr 15;31(8):1334–6. doi: 10.1093/bioinformatics/btu779 25431330
52. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015 Jan 23;347(6220):1260419. doi: 10.1126/science.1260419 25613900
53. Petersen AK, Krumsiek J, Wägele B, Theis FJ, Wichmann HE, Gieger C, et al. On the hypothesis-free testing of metabolite ratios in genome-wide and metabolome-wide association studies. BMC Bioinformatics. 2012;13:120. doi: 10.1186/1471-2105-13-120 22672667
54. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, et al. The human urine metabolome. PloS ONE. 2013;8(9):e73076. doi: 10.1371/journal.pone.0073076 24023812
55. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Research. 2014 Jan;42(Database issue):D980–5. doi: 10.1093/nar/gkt1113 24234437
56. Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Human Genetics. 2014 Jan;133(1):1–9. 24077912
57. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, et al. The NCBI dbGaP database of genotypes and phenotypes. Nature Genetics. 2007 Oct;39(10):1181–6. 17898773
58. Larive CK, Barding GA Jr., Dinges MM. NMR spectroscopy for metabolomics and metabolic profiling. Analytical Chemistry. 2015 Jan 6;87(1):133–46. doi: 10.1021/ac504075g 25375201
59. Veiga-da-Cunha M, Hadi F, Balligand T, Stroobant V, Van Schaftingen E. Molecular identification of hydroxylysine kinase and of ammoniophospholyases acting on 5-phosphohydroxy-L-lysine and phosphoethanolamine. The Journal of Biological Chemistry. 2012 Mar 2;287(10):7246–55. doi: 10.1074/jbc.M111.323485 22241472
60. Shao L, Vawter MP. Shared gene expression alterations in schizophrenia and bipolar disorder. Biological Psychiatry. 2008 Jul 15;64(2):89–97. doi: 10.1016/j.biopsych.2007.11.010 18191109
61. Benson JM, Tibbetts BM, Barr EB. The uptake, distribution, metabolism, and excretion of methyl tertiary-butyl ether inhaled alone and in combination with gasoline vapor. Journal of Toxicology and Environmental Health Part A. 2003 Jun 13;66(11):1029–52. 12775515
62. Amberg A, Rosner E, Dekant W. Biotransformation and kinetics of excretion of methyl-tert-butyl ether in rats and humans. Toxicological Sciences. 1999 Sep;51(1):1–8. 10496672
63. McGregor D. Ethyl tertiary-butyl ether: a toxicological review. Critical Reviews in Toxicology. 2007 May;37(4):287–312. 17453936
64. Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proceedings of the National Academy of Sciences of the United States of America. 2008 Feb 12;105(6):2117–22. doi: 10.1073/pnas.0712038105 18252821
65. Altmaier E, Fobo G, Heier M, Thorand B, Meisinger C, Römisch-Margl W, et al. Metabolomics approach reveals effects of antihypertensives and lipid-lowering drugs on the human metabolism. European Journal of Epidemiology. 2014 May;29(5):325–36. doi: 10.1007/s10654-014-9910-7 24816436
66. Dai L, Peng C, Montellier E, Lu Z, Chen Y, Ishii H, et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nature Chemical Biology. 2014 May;10(5):365–70. doi: 10.1038/nchembio.1497 24681537
67. Lee JH, Tate CM, You JS, Skalnik DG. Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex. The Journal of Biological Chemistry. 2007 May 4;282(18):13419–28. 17355966
68. Bär A, Oesterhelt G. Conversion of [U-13C]xylitol and D-[U-13C]glucose into urinary [1,2-13C]glycollate and [1,2-13C]oxalate in man. International journal for vitamin and nutrition research Supplement = Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung Supplement. 1985;28:119–33. 3938801
69. Conyers RA, Huber TW, Thomas DW, Rofe AM, Bais R, Edwards RG. A one-compartment model for calcium oxalate tissue deposition during xylitol infusions in humans. International journal for vitamin and nutrition research Supplement = Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung Supplement. 1985;28:47–57. 3938803
70. Holmes RP, Assimos DG. Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. The Journal of Urology. 1998 Nov;160(5):1617–24. 9783918
71. Conyers RA, Bais R, Rofe AM. The relation of clinical catastrophes, endogenous oxalate production, and urolithiasis. Clinical Chemistry. 1990 Oct;36(10):1717–30. 2208646
72. Rao NM, Yallapragada A, Winden KD, Saver J, Liebeskind DS. Stroke in primary hyperoxaluria type I. Journal of Neuroimaging. 2014 Jul-Aug;24(4):411–3. doi: 10.1111/jon.12020 23551880
73. Bayar C, Ozer I. A study on the route of 1-methylurate formation in theophylline metabolism. European Journal of Drug Metabolism and Pharmacokinetics. 1997 Oct-Dec;22(4):415–9. 9512943
74. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics. 2005 Jul;37(7):766–70. 15965474
75. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007 Jun 29;129(7):1401–14. 17604727
76. Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S, Brownstein MJ, et al. Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics. 2005;6:267. 16274478
77. Pekkala S, Martinez AI, Barcelona B, Yefimenko I, Finckh U, Rubio V, et al. Understanding carbamoyl-phosphate synthetase I (CPS1) deficiency by using expression studies and structure-based analysis. Human Mutation. 2010 Jul;31(7):801–8. doi: 10.1002/humu.21272 20578160
78. Kikuchi G. The glycine cleavage system: composition, reaction mechanism, and physiological significance. Molecular and Cellular Biochemistry. 1973 Jun 27;1(2):169–87. 4585091
79. Kikuchi G, Motokawa Y, Yoshida T, Hiraga K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proceedings of the Japan Academy Series B, Physical and Biological Sciences. 2008;84(7):246–63. 18941301
80. Roll P, Massacrier A, Pereira S, Robaglia-Schlupp A, Cau P, Szepetowski P. New human sodium/glucose cotransporter gene (KST1): identification, characterization, and mutation analysis in ICCA (infantile convulsions and choreoathetosis) and BFIC (benign familial infantile convulsions) families. Gene. 2002 Feb 20;285(1–2):141–8. 12039040
81. Groenen PM, Klootwijk R, Schijvenaars MM, Straatman H, Mariman EC, Franke B, et al. Spina bifida and genetic factors related to myo-inositol, glucose, and zinc. Molecular Genetics and Metabolism. 2004 Jun;82(2):154–61. 15172003
82. Aouameur R, Da Cal S, Bissonnette P, Coady MJ, Lapointe JY. SMIT2 mediates all myo-inositol uptake in apical membranes of rat small intestine. American Journal of Physiology—Gastrointestinal and Liver Physiology. 2007 Dec;293(6):G1300–7. 17932225
83. Lahjouji K, Aouameur R, Bissonnette P, Coady MJ, Bichet DG, Lapointe JY. Expression and functionality of the Na+/myo-inositol cotransporter SMIT2 in rabbit kidney. Biochimica et Biophysica Acta. 2007 May;1768(5):1154–9. 17306760
84. John U, Greiner B, Hensel E, Lüdemann J, Piek M, Sauer S, et al. Study of Health In Pomerania (SHIP): a health examination survey in an east German region: objectives and design. Sozial- und Präventivmedizin. 2001;46(3):186–94. 11565448
85. Völzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, Friedrich N, et al. Cohort profile: the study of health in Pomerania. International Journal of Epidemiology. 2011 Apr;40(2):294–307. doi: 10.1093/ije/dyp394 20167617
86. Holle R, Happich M, Löwel H, Wichmann HE, Group MKS. KORA—a research platform for population based health research. Gesundheitswesen. 2005 Aug;67 Suppl 1:S19–25. 16032513
87. Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nature Methods. 2012 Feb;9(2):179–81.
88. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genetics. 2009 Jun;5(6):e1000529. doi: 10.1371/journal.pgen.1000529 19543373
89. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. American journal of Human Genetics. 2007 Sep;81(3):559–75. 17701901
90. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Research. 2013 Jan;41(Database issue):D801–7. doi: 10.1093/nar/gks1065 23161693
91. Barngrover DA, Stevens HC, Dills WL Jr.D-Xylulose-1-phosphate: enzymatic assay and production in isolated rat hepatocytes. Biochemical and Biophysical Research Communications. 1981 Sep 16;102(1):75–80. 6458298
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 9
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Arabidopsis AtPLC2 Is a Primary Phosphoinositide-Specific Phospholipase C in Phosphoinositide Metabolism and the Endoplasmic Reticulum Stress Response
- Bridges Meristem and Organ Primordia Boundaries through , , and during Flower Development in
- KLK5 Inactivation Reverses Cutaneous Hallmarks of Netherton Syndrome
- The Chromatin Protein DUET/MMD1 Controls Expression of the Meiotic Gene during Male Meiosis in