#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Autoimmunity in Arabidopsis Is Mediated by Epigenetic Regulation of an Immune Receptor


Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R) proteins, that trigger strong immune responses including localized host cell death. The accelerated cell death 11 (acd11) “lesion mimic” mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown. In a screen for lazarus (laz) mutants that suppress acd11 death we identified two genes, LAZ2 and LAZ5. LAZ2 encodes the histone lysine methyltransferase SDG8, previously shown to epigenetically regulate flowering time via modification of histone 3 (H3). LAZ5 encodes an RPS4-like R-protein, defined by several dominant negative alleles. Microarray and chromatin immunoprecipitation analyses showed that LAZ2/SDG8 is required for LAZ5 expression and H3 lysine 36 trimethylation at LAZ5 chromatin to maintain a transcriptionally active state. We hypothesize that LAZ5 triggers cell death in the absence of ACD11, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity.


Vyšlo v časopise: Autoimmunity in Arabidopsis Is Mediated by Epigenetic Regulation of an Immune Receptor. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001137
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001137

Souhrn

Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R) proteins, that trigger strong immune responses including localized host cell death. The accelerated cell death 11 (acd11) “lesion mimic” mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown. In a screen for lazarus (laz) mutants that suppress acd11 death we identified two genes, LAZ2 and LAZ5. LAZ2 encodes the histone lysine methyltransferase SDG8, previously shown to epigenetically regulate flowering time via modification of histone 3 (H3). LAZ5 encodes an RPS4-like R-protein, defined by several dominant negative alleles. Microarray and chromatin immunoprecipitation analyses showed that LAZ2/SDG8 is required for LAZ5 expression and H3 lysine 36 trimethylation at LAZ5 chromatin to maintain a transcriptionally active state. We hypothesize that LAZ5 triggers cell death in the absence of ACD11, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity.


Zdroje

1. JonesJD

DanglJL

2006 The plant immune system. Nature 444 323 329

2. Van der BiezenEA

JonesJD

1998 Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23 454 456

3. DanglJL

JonesJD

2001 Plant pathogens and integrated defence responses to infection. Nature 411 826 833

4. MaratheR

Dinesh-KumarSP

2003 Plant defense: one post, multiple guards?! Mol Cell 11 284 286

5. CaplanJ

PadmanabhanM

Dinesh-KumarSP

2008 Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3 126 135

6. CollierSM

MoffettP

2009 NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci 14 521 529

7. AusubelFM

2005 Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6 973 979

8. FritzJH

FerreroRL

PhilpottDJ

GirardinSE

2006 Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7 1250 1257

9. EckmannL

KarinM

2005 NOD2 and Crohn's disease: loss or gain of function? Immunity 22 661 667

10. LorrainS

VailleauF

BalagueC

RobyD

2003 Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8 263 271

11. ShiranoY

KachrooP

ShahJ

KlessigDF

2002 A gain-of-function mutation in an Arabidopsis Toll Interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14 3149 3162

12. BelkhadirY

NimchukZ

HubertDA

MackeyD

DanglJL

2004 Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16 2822 2835

13. XiaoS

BrownS

PatrickE

BrearleyC

TurnerJG

2003 Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15 33 45

14. ZipfelC

RobatzekS

NavarroL

OakeleyEJ

JonesJD

2004 Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428 764 767

15. YiH

RichardsEJ

2007 A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 19 2929 2939

16. BombliesK

WeigelD

2007 Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat Rev Genet 8 382 393

17. BombliesK

LempeJ

EppleP

WarthmannN

LanzC

2007 Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol 5 e236

18. BrodersenP

PetersenM

PikeHM

OlszakB

SkovS

2002 Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 16 490 502

19. FedorovaND

BadgerJH

RobsonGD

WortmanJR

NiermanWC

2005 Comparative analysis of programmed cell death pathways in filamentous fungi. BMC Genomics 6 177

20. AartsN

MetzM

HolubE

StaskawiczBJ

DanielsMJ

1998 Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci U S A 95 10306 10311

21. MichaelsSD

AmasinoRM

1999 FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11 949 956

22. CazzonelliCI

CuttrissAJ

CossettoSB

PyeW

CrispP

2009 Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell 21 39 53

23. ZhaoZ

YuY

MeyerD

WuC

ShenWH

2005 Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol 7 1256 1260

24. MartinC

ZhangY

2005 The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6 838 849

25. XuL

ZhaoZ

DongA

Soubigou-TaconnatL

RenouJP

2008 Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28 1348 1360

26. KroganNJ

KimM

TongA

GolshaniA

CagneyG

2003 Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 23 4207 4218

27. BastowR

MylneJS

ListerC

LippmanZ

MartienssenRA

2004 Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427 164 167

28. KimSY

HeY

JacobY

NohYS

MichaelsS

2005 Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase. Plant Cell 17 3301 3310

29. DongG

MaDP

LiJ

2008 The histone methyltransferase SDG8 regulates shoot branching in Arabidopsis. Biochem Biophys Res Commun 373 659 664

30. GassmannW

HinschME

StaskawiczBJ

1999 The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J 20 265 277

31. TakkenFL

TamelingWI

2009 To nibble at plant resistance proteins. Science 324 744 746

32. TianD

TrawMB

ChenJQ

KreitmanM

BergelsonJ

2003 Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423 74 77

33. YuanJ

HeSY

1996 The Pseudomonas syringae Hrp regulation and secretion system controls the production and secretion of multiple extracellular proteins. J Bacteriol 178 6399 6402

34. GrantMR

GodiardL

StraubeE

AshfieldT

LewaldJ

1995 Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269 843 846

35. ShaoF

GolsteinC

AdeJ

StoutemyerM

DixonJE

2003 Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301 1230 1233

36. MindrinosM

KatagiriF

YuGL

AusubelFM

1994 The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78 1089 1099

37. BentAF

KunkelBN

DahlbeckD

BrownKL

SchmidtR

1994 RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265 1856 1860

38. PflugerJ

WagnerD

2007 Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol 10 645 652

39. StrahlBD

AllisCD

2000 The language of covalent histone modifications. Nature 403 41 45

40. van den BurgHA

TakkenFL

2009 Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci 14 286 294

41. ZhouC

ZhangL

DuanJ

MikiB

WuK

2005 HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17 1196 1204

42. DhawanR

LuoH

FoersterAM

AbuqamarS

DuHN

2009 HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 21 1000 1019

43. March-DiazR

Garcia-DominguezM

Lozano-JusteJ

LeonJ

FlorencioFJ

2008 Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. Plant J 53 475 487

44. MosherRA

DurrantWE

WangD

SongJ

DongX

2006 A comprehensive structure-function analysis of Arabidopsis SNI1 defines essential regions and transcriptional repressor activity. Plant Cell 18 1750 1765

45. AyN

IrmlerK

FischerA

UhlemannR

ReuterG

2009 Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J 58 333 346

46. Alvarez-VenegasR

AbdallatAA

GuoM

AlfanoJR

AvramovaZ

2007 Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics 2 106 113

47. Alvarez-VenegasR

SadderM

HlavackaA

BaluskaF

XiaY

2006 The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes. Proc Natl Acad Sci U S A 103 6049 6054

48. ArbibeL

2008 Immune subversion by chromatin manipulation: a ‘new face’ of host-bacterial pathogen interaction. Cell Microbiol 10 1582 1590

49. LiebermanPM

2006 Chromatin regulation of virus infection. Trends Microbiol 14 132 140

50. HamonMA

BatscheE

RegnaultB

ThamTN

SeveauS

2007 Histone modifications induced by a family of bacterial toxins. Proc Natl Acad Sci U S A 104 13467 13472

51. LiJ

KrichevskyA

VaidyaM

TzfiraT

CitovskyV

2005 Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci U S A 102 5733 5738

52. YiH

SardesaiN

FujinumaT

ChanCW

Veena

2006 Constitutive expression exposes functional redundancy between the Arabidopsis histone H2A gene HTA1 and other H2A gene family members. Plant Cell 18 1575 1589

53. JacobY

FengS

LeBlancCA

BernatavichuteYV

StroudH

2009 ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat Struct Mol Biol 16 763 768

54. Dinesh-KumarSP

ThamWH

BakerBJ

2000 Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Natl Acad Sci U S A 97 14789 14794

55. MestreP

BaulcombeDC

2006 Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 18 491 501

56. RosenstielP

HuseK

TillA

HampeJ

HellmigS

2006 A short isoform of NOD2/CARD15, NOD2-S, is an endogenous inhibitor of NOD2/receptor-interacting protein kinase 2-induced signaling pathways. Proc Natl Acad Sci U S A 103 3280 3285

57. Dinesh-KumarSP

BakerBJ

2000 Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci U S A 97 1908 1913

58. ZhangXC

GassmannW

2007 Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses. Plant Physiol 145 1577 1587

59. LiangH

YaoN

SongJT

LuoS

LuH

2003 Ceramides modulate programmed cell death in plants. Genes Dev 17 2636 2641

60. WangW

YangX

TangchaiburanaS

NdehR

MarkhamJE

2008 An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20 3163 3179

61. PetersenM

BrodersenP

NaestedH

AndreassonE

LindhartU

2000 Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103 1111 1120

62. YangS

HuaJ

2004 A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16 1060 1071

63. PetersenNH

JoensenJ

McKinneyLV

BrodersenP

PetersenM

2009 Identification of proteins interacting with Arabidopsis ACD11. J Plant Physiol 166 661 666

64. Faigon-SovernaA

HarmonFG

StoraniL

KarayekovE

StaneloniRJ

2006 A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development. Plant Cell 18 2919 2928

65. AlonsoJM

StepanovaAN

LeisseTJ

KimCJ

ChenH

2003 Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301 653 657

66. AvivDH

RusterucciC

HoltBF3rd

DietrichRA

ParkerJE

2002 Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR1-dependent. Plant J 29 381 391

67. QiuJL

FiilBK

PetersenK

NielsenHB

BotangaCJ

2008 Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. Embo J 27 2214 2221

68. Nour-EldinHH

HansenBG

NorholmMH

JensenJK

HalkierBA

2006 Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 34 e122

69. NakagawaT

SuzukiT

MurataS

NakamuraS

HinoT

2007 Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem 71 2095 2100

70. CloughSJ

BentAF

1998 Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16 735 743

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#